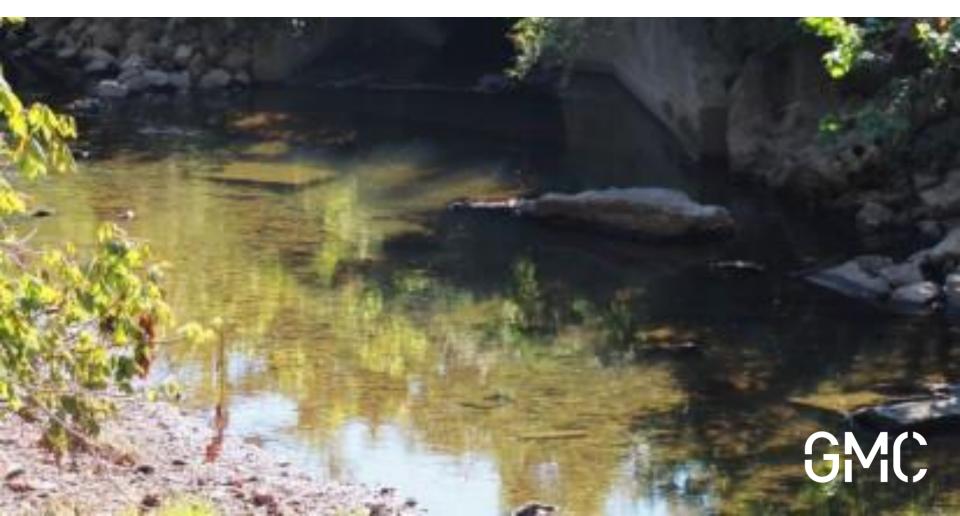

SHADES CREEK WATERSHED MANAGEMENT PLAN

GMC

Courtney Reich, AICP, CFM, Goodwyn Mills & Cawood

Shades Creek Watershed Management Plan Project Area

- » Upper Shades Creek
 - » 26,395 acres
 - » HUC ID 031502020301
- » Lower Shades Creek
 - » 44,470 acres,
 - » HUC ID 031502020303
- » Cooley Creek/Mud Creek
 - » 17,905 acres
 - » HUC ID 031502020302



GMC

Planning Team

OVERVIEW OF THE PLANNING PROCESS

EPA 9-Step Watershed Management Plan

EPA's 9 Minimum Elements of Successful Watershed Plans (WMP)

https://www.epa.gov/sites/production/files/201512/documents/watershed_mgmnt_quick_guide.pdf

Benefits of a WMP

- Actionable plan to address water quality impairments
- Eligibility for 319 grant funding for implementation
- Engages the community in watershed protection
- NPDES MS4 Permit compliance
 - Impaired waters monitoring
 - Public education and involvement
 - Green infrastructure/Low Impact Development

Why Watershed Plans Fail

- Planning activities were conducted at too great a scale.
- The plan was a one-time study rather than a long-term management process
- Stakeholder involvement and local ownership were lacking
- The plan skirted land use/management issues in the watershed
- The document was too long or complex
- The recommendations were too general
- The plan failed to identify and address conflicts.

From Handbook for Developing Watershed Plans to Restore and Protect our Waters, EPA

Watershed Planning Process

https://www.epa.gov/sites/production/files/201512/documents/watershed_mgmnt_quick_guide.pdf

Step 1: Build Partnerships

Community Engagement Process

» Build Partnerships

- » Ensure the right people are at the table
- » Prepare for future implementation

» Solicit Input

- » Listen to the community
- » Opportunities and challenges

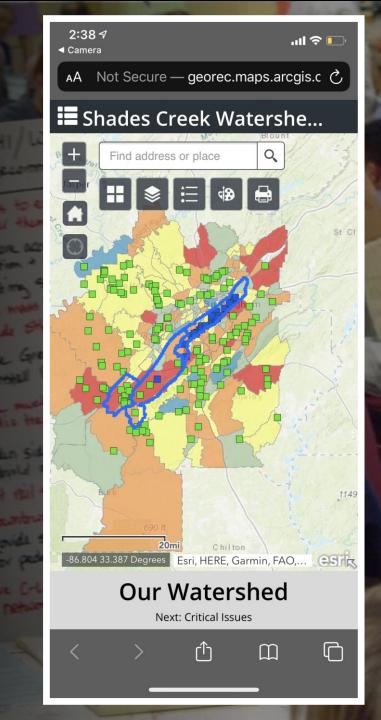
GMC

Online Survey

»10 minute survey

» Geographical questions
» Identify issues & areas of concern

📰 Shades Creek Watershe...



Using the map above as a guide, which of the three Shades Creek Watersheds applies to your interests (check all that apply):

I live or own property in Upper Shades Creek
I work in Upper Shades Creek
Tell us what you think Next: Keep me informed
< > 🗘 🕮

Story Map Website » Community Engagement » View GIS data » Access survey

Open Houses

- » Targeted by Geography
- » Purpose:
 - » Introduce the project
 - » Understand issues in the watershed
 - » Identify opportunities to improve the watershed

#41/LOhecko

CODE CAL

courses the of alternative teams.

and subtran and in continging causes to

where were sti while in here by main to make more

from a burn abus

The party state of the " CUPESNE DILL HIZL

ve Green + Wright Six to suite traifie and comp

a side of Window Rd. org. Islam (" and Lines.

It sale + acetholically pleasing cards + white any

I an workly : make a participant / bies that

offer to consert Source through Compares

Tight rail Stretcen for public trans

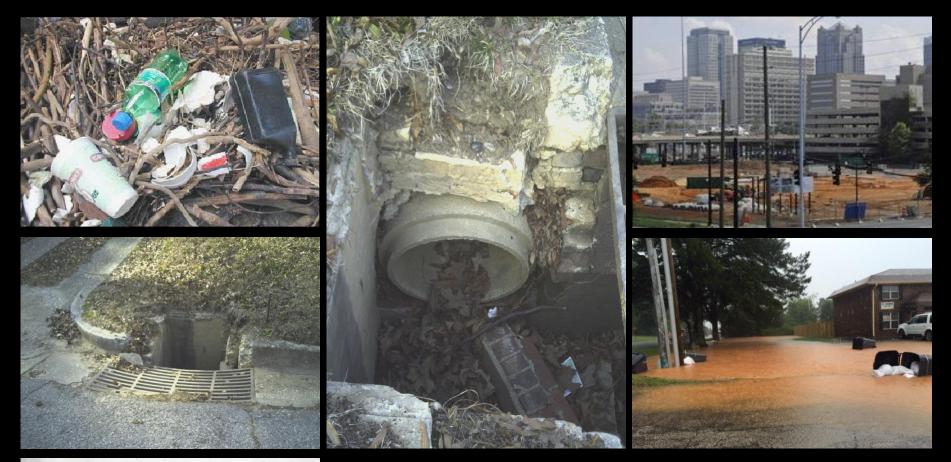
a half by welking + liking

or pedestriants to commute this

THE MOUNT HE CL

Changes you to Parketerd

- » February 11th Homewood City Hall – 4 PM to 7 PM
- » February 25th Tannehill State Park 4 PM to 7 PM


Community Events

» Salamander Festival» Others?

Gather	Identify	Analyze	Identify	Estimate
Gather existing data and create a watershed inventory	Identify data gaps and collect additional data if needed	Analyze data	Identify causes and sources of pollution that need to be controlled	Estimate pollutant loads

Step 2: Characterize the Watershed

What causes Water Quality Impairment?

Source Data

Physical and natural features—watershed boundaries, hydrology, topography, soils, climate, habitat, wildlife.

ŤŤŤ

Land use and population characteristics—land use and land cover, existing management practices, demographics.

Water body and watershed conditions—water quality standards, 305 (b) report, 303(d) list, TMDL reports, source water assessments.

Pollutant sources—point sources, nonpoint sources.

Water body monitoring data—water quality and flow, biology, geomorphology

Land Cover Changes (2001-2016) – Upper Shades Creek

65

459

Open Water Perennial Snow/Ice Developed, Open Space Developed, Low Intensity Developed, Medium Intensity Developed, High Intensity Barren Land **Deciduous Forest** Evergreen Forest Mixed Forest Shrub/Scrub Herbaceuous Hay/Pasture Cultivated Crops Woody Wetlands Emergent Herbaceuous Wetlands

59

Land Cover Changes (2001-2016) – Lower Shades Creek

20

20

Open Water Perennial Snow/Ice Developed, Open Space Developed, Low Intensity Developed, Medium Intensity Developed, High Intensity Barren Land **Deciduous Forest** Evergreen Forest Mixed Forest Shrub/Scrub Herbaceuous Hay/Pasture **Cultivated Crops** Woody Wetlands Emergent Herbaceuous Wetlands

459

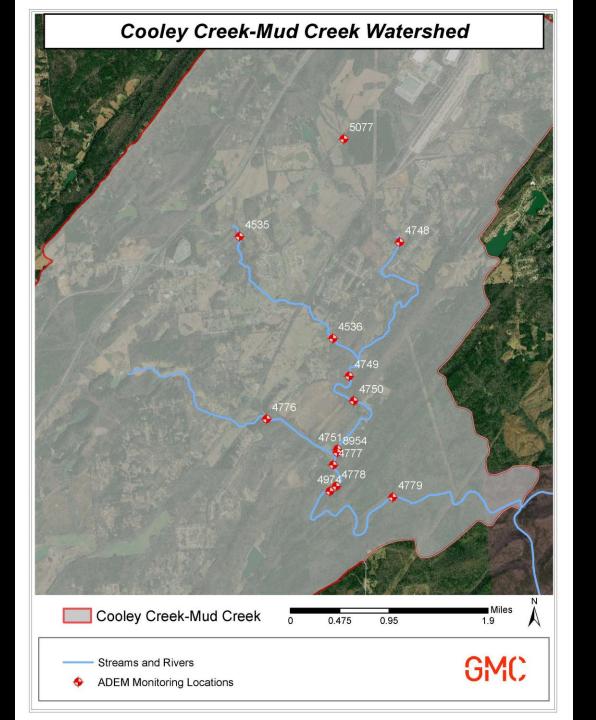
Water Body	Impairment	Regulatory Status		
Cooley Creek	Pathogens (bacteria)	Approved TMDL (2003)		
Mud Creek	Pathogens (bacteria)	Approved TMDL (2003)		
Mill Creek	Pathogens (bacteria)	Approved TMDL (2003)		
Shades Creek	Pathogens (bacteria); Siltation, Turbidity, and Habitat Alteration	Approved TMDL (2003); (2003)		

ADEM Water Quality Designation

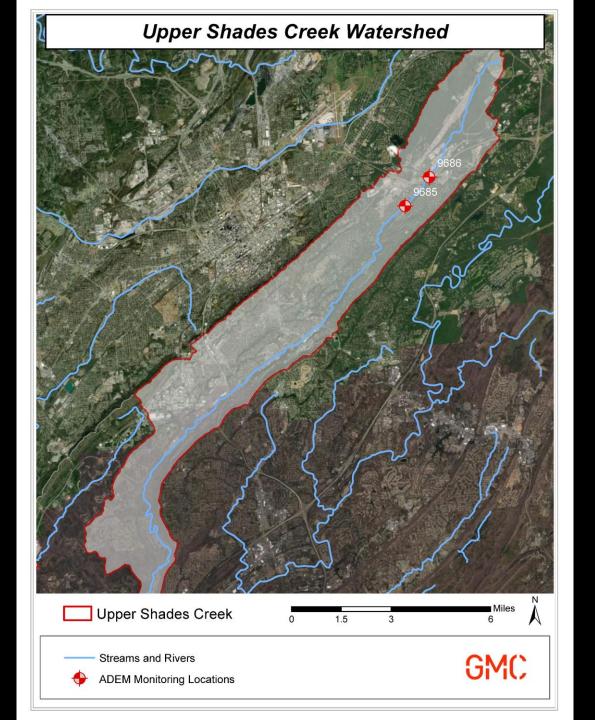
All surface waters in Shades Creek Watershed are designated ¹Fish and Wildlife, ²Swimming and other Whole Body Water-Contact Sports, and ³Agricultural and Industrial Water Supply

Water Quality Issues

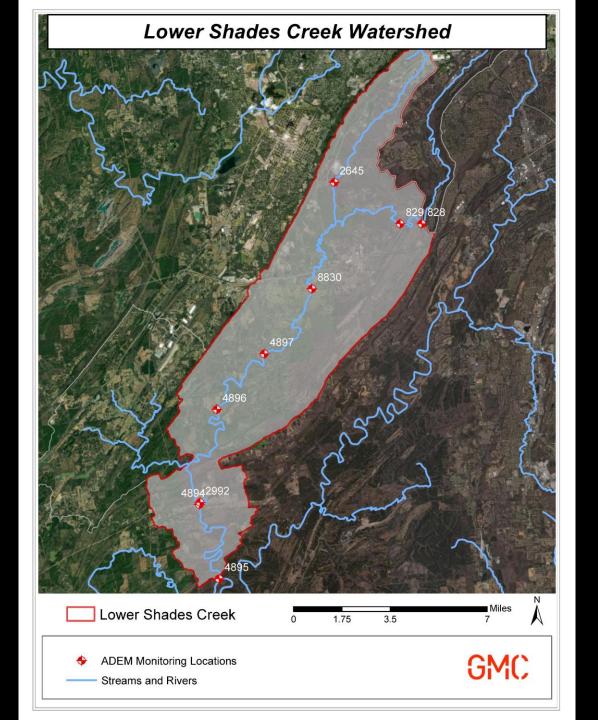
Bacteria


- Fecal Coliform
- E. Coli

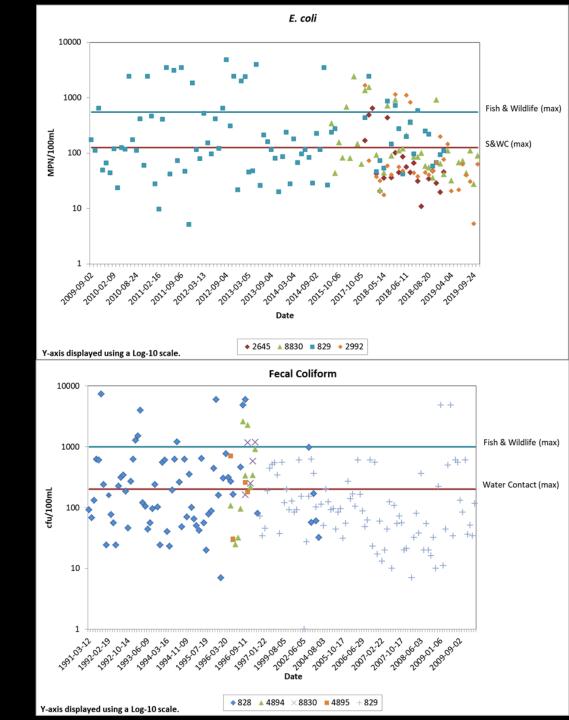
Nutrients


- Nitrogen
- Phosphorus

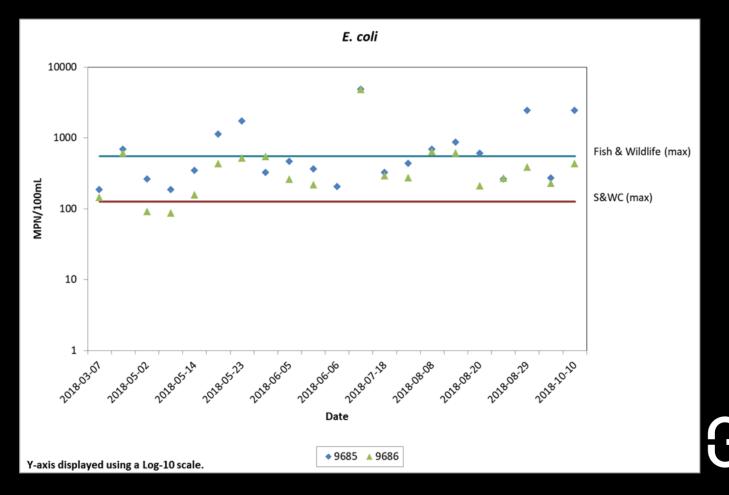
Sediment


- Turbidity
- Total Suspended Solids

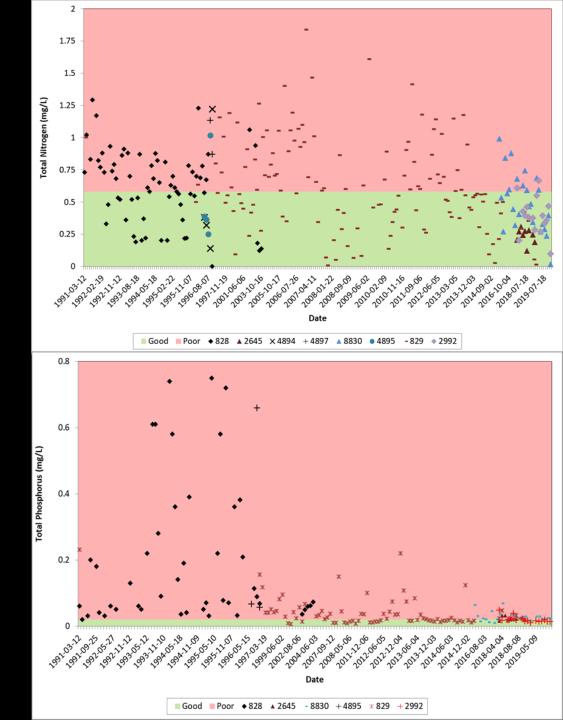
GMC


GM()

GM()


Bacteria

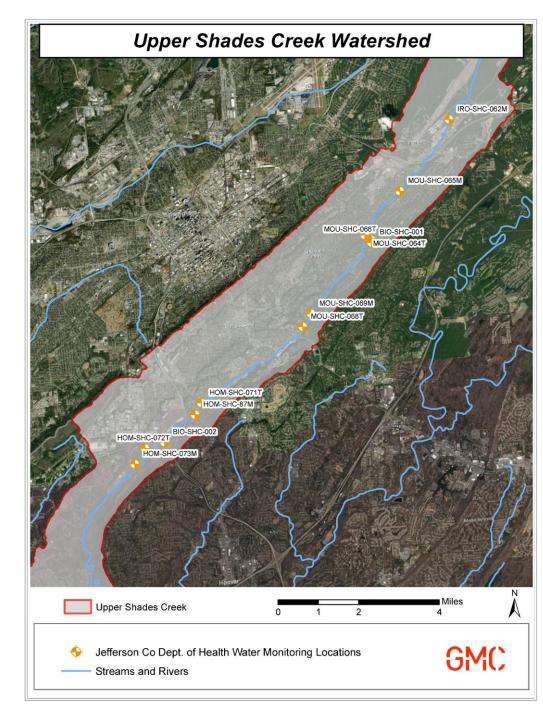
Lower Shades Creek frequently had levels of both fecal coliform and *E. coli* that surpassed standards.

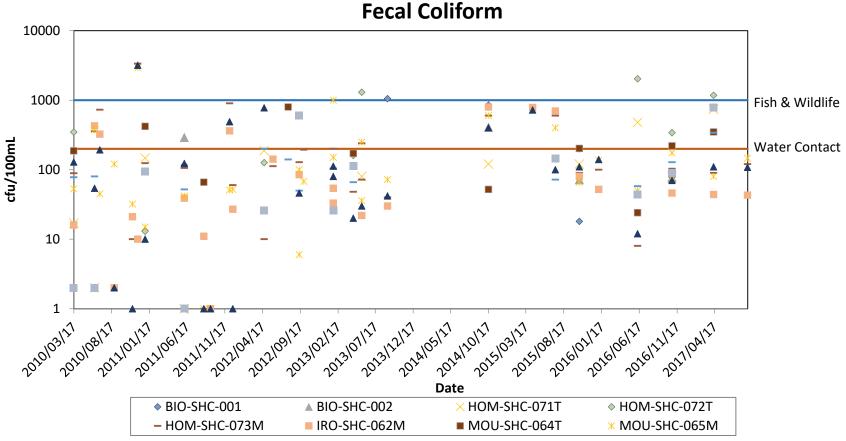

Bacteria

Upper Shades Creek's *E. coli* levels were above standards in almost all sampling events.

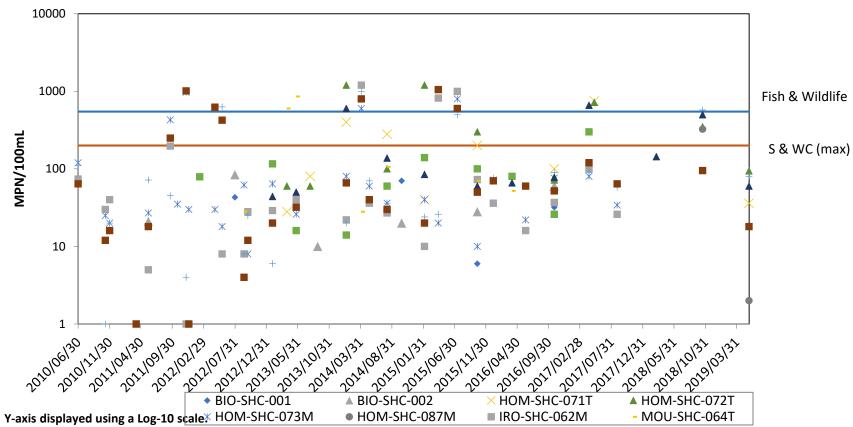
Nutrients

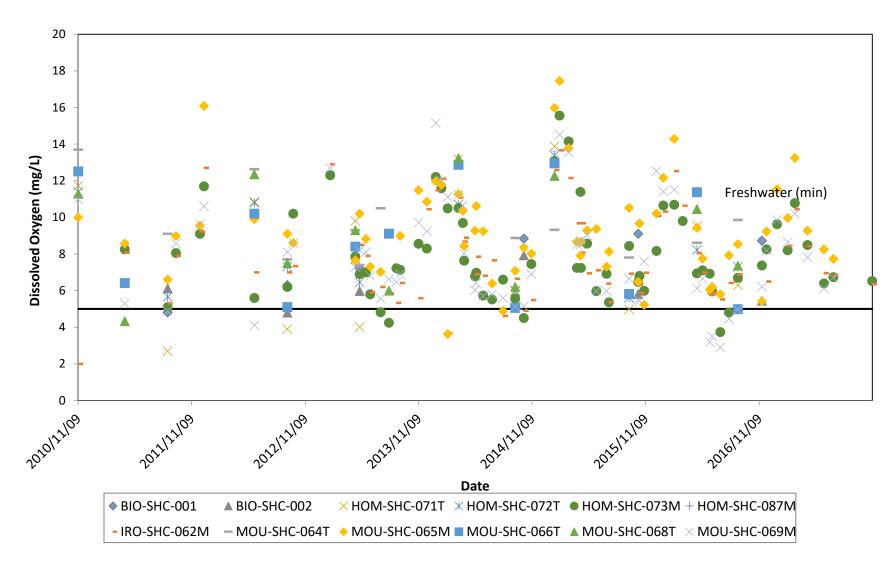
- » Lower Shades Creek saw high total phosphorus (TP) and mostly high total nitrogen (TN) (Right)
- » Cooley Creek-Mud Creek and Upper Shades Creek stations have limited data that show occasional elevated levels of TN and TP


Suspended-Sediment Transport and **Bed-Materials** Characteristics of Shades Creek, AL and Ecoregion 67: Developing Water Quality Criteria for Suspended and **Bed-Material** Sediment.¹


> ¹USDA Research Service National Sedimentation Laboratory Technical Report 43, Channel and Watershed Processes Research Unit, January 2004.

- Increases in sediment load are a direct result of greater runoff rates.
- Streambanks are the greatest source of sediments to suspended load, generally.
- One model simulated protection of 11% of the streambank (in one area) which resulted in a 40% reduction in suspended sediment load (fines) from the banks.


Jefferson County Department of Health Water Quality Monitoring Data



Y-axis displayed using a Log-10 scale.

***Fecal coliform standards for Fish & Wildlife are less than 1000colonies/100mL in a geometric mean sample, and less than 200 colonies/100mL in a geometric mean sample in the months June-September when water contact and recreation might occur. E. coli

***The designations of Fish & Wildlife and Swimming and Other Whole Body Water-Contact Sports (S&WC) are displayed as 548colonies/100mL in geometric mean and 126colonies/100mL in geometric mean, respectively.

DO

NPDES MS4 Stormwater Permit Program

- Stormwater management program plan (SWMPP) to prevent the discharge of stormwater pollutants into the MS4 (Municipal Separate Storm Sewer System).
- Phase I Communities over100,000 people (i.e. Birmingham/Jefferson County). *Initiated 1994-1995.*
- Phase II Communities/areas designated as "urbanized" based on Census data. (i.e. Anniston/Calhoun County, Mobile/Baldwin County, etc).
 Initiated 2003.

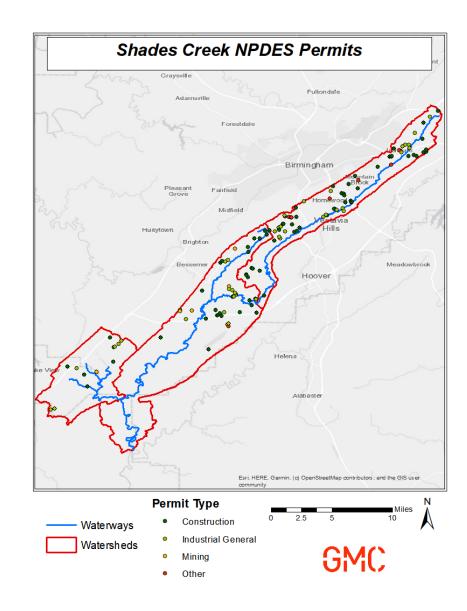
MS4 Permits – Jefferson County

Highlights of SWMPP Implementation 2018

Birmingham

- 23 illicit discharges: 9 ongoing, 12 resolved, and 1 referred.
- Stormwater maintenance: 150 catch basins repaired, 11 cleaned, 522 storm pipes cleaned, 392 streets swept.
- Construction Inspections: 1180 erosion & sedimentation inspections, 108 failed and had corrective actions taken.
- 234 spills were handled.
- Significant unpermitted discharges

Jefferson County


- 418 tons of trash collected from roadways
- 79 roadside cleanups with 2527 volunteers picked up 115 tons of litter.
- 3,694 gallons of cooking oil and grease was recycled
- 162 illicit discharges were investigated
- 50 spills were handled.
- 2145 restaurant grease inspections were completed with 113 enforcement actions taken.

GMC

 870 erosion and sediment control inspections

NPDES Permittees

- Permit types are as follows:
 - 80 Construction
 - 46 Industrial
 - 7 Mining
 - 11 Other

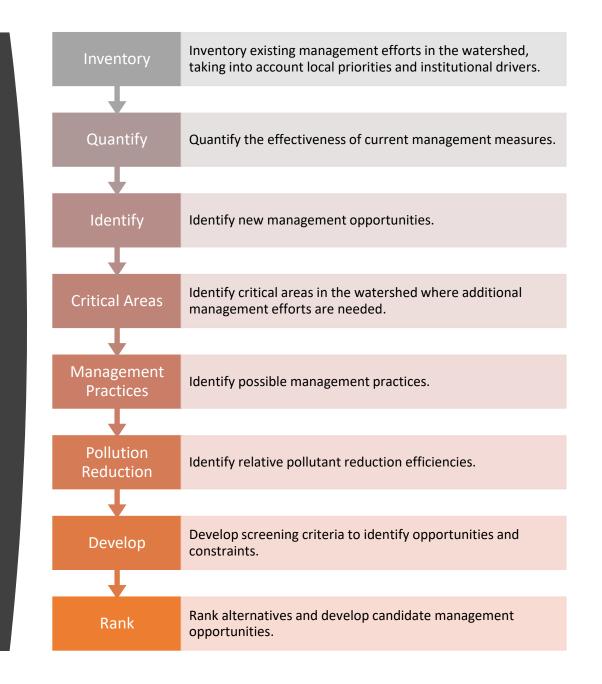
Step 3: Set Goals and Identify Solutions

Set	Set overall goals and management objectives
Develop	Develop indicators/targets
Determine	Determine load reductions needed
Identify	Identify critical areas
Develop	Develop management measures to achieve goals
	UNI GIVI

Planning Process

Overall Goal	Management Objective	Performance Indicator
Restore Aquatic Habitat & Improve Water Quality	Reduce Sediment Loads	Number of river miles that meet water quality standards.
	Improve Riparian Vegetation	Miles of vegetated riparian buffer
	Reduce Non-Point Source Discharges	Number of management measures implemented in watershed
		Rates of volunteer participation in watershed activities

Load Reduction – TMDLs


TMDL for Sediment, Turbidity, and Habitat Alteration in Shades Creek is **24.7** T/yr/km^{2.}

Shades Creek currently has an estimated sediment yield of **52.6** T/yr/km^{2.}

A <u>53%</u> reduction in suspended-sediment yield is required for Shades Creek.

Process to Select Management Practices

Management Measures: Specific Projects

Example: Shades Creek Enhancement project located on the campus of Samford University in Homewood, Alabama was designed to improve aquatic habitat and water quality while enhancing stream stability and providing native riparian vegetation.

Management Measures: Programs and Policies

LOCAL GOVERNMENTS

- Erosion & Sedimentation Program
- Green Infrastructure
- Sanitary Sewer Inspection & Maintenance
- Volunteer watershed programs

STATE, FEDERAL & REGIONAL AGENCIES

- Revise DO standards for black water streams
- Forestry BMP assessment & compliance
- Prioritize funding for identified projects
- Continue monitoring of Shades Creek

Step 4: Design Implementation Program

Develop an implementation schedule

Develop interim milestones

Develop criteria to measure progress

Develop water quality monitoring program

Develop education program

Develop evaluation process

Identify needed technical and financial assistance

Assign responsibility

Implementation Plan Example – St. Marys WMP

		Milestone			9		
Best Management Practice	Responsible Agency	Cost	Funding Source	Evaluation Measure	Short (<2 yr)	Mid (2 – 5 yr)	Long (5 – 10 yr)
BMP 6: Implementation of the CSS to the Georgia Stormwater Management Manual	Camden County, St Marys, Kingsland	Staff Time	General Fund, Fees	Percent of applicable site plans reviewed inspected for compliance with CSS	50%	75%	100%
BMP 19: University of Georgia River Basin Center Septic System Retrofit Program	University of Georgia River Basin Center	\$166,667	319 Grant Funding	Number of septic systems inspected/retrofitted/ repaired/pumped Number of public outreach events	14 2	n/a	n/a

GENERAL DISCUSSION

From your perspective, what is essential to the success of this project?

i crafting a plan for the future of the lown f Cary...

opportunity before us?

Online Survey

»10 minute survey

» Geographical questions
» Identify issues & areas of concern

📰 Shades Creek Watershe...

Using the map above as a guide, which of the three Shades Creek Watersheds applies to your interests (check all that apply):

I live or own property in Upper Shades Creek
I work in Upper Shades Creek
Tell us what you think Next: Keep me informed
< > 🗘 🕮