SHADES CREEK WATERSHED MANAGEMENT PLAN

Submitted to: The Nature Conservancy Alabama Chapter Office 2100 1st Avenue North Birmingham, AL 35203

December 2021

Prepared and submitted by:

GMC

1.0 INTRODUCTION

1.1 PLAN OVERVIEW
1.2 PLAN PURPOSE
1.3 PLAN VISION
1.4 GOALS AND OBJECTIVES
1.5 WATERSHED PLANNING COMMITTEES1-
1.5.1 Steering Committee1-
1.5.2 Other Committees and Community Input1-
1.6 EPA NINE KEY ELEMENTS

2.0 PUBLIC PARTICIPATION AND EDUCATION

2.1 STAKEHOLDER INVOLVEMENT	2-1
2.2 OPEN HOUSE COMMUNITY MEETINGS	2-1
2.2.1 Outreach and Publicity	2-1
2.2.2 Open House Meetings Program	2-2
2.2.3 Results	2-4
2.3 ONLINE SURVEY	

3.0 PUBLIC PARTICIPATION AND EDUCATION

3.1 WATERSHED CHARACTERIZATION
3.2 WATERSHED BOUNDARY
3.3 LAND USE
3.4 SURFACE WATER
3.5 PHYSICAL SETTING
3.5.1 Ecoregions
3.5.2 Geology
3.5.3 Soils
3.5.4 Topography
3.6 HYDROLOGY
3.6.1 Rainfall and Climate
3.6.2 Groundwater Resources
3.6.3 FEMA Flood Zones
3.6.4 Wetlands
3.7 BIOLOGICAL RESOURCES
3.7.1 Flora and Fauna
3.7.2 Protected Species
3.7.3 Invasive Species
3.8 DEMOGRAPHIC AND SOCIOECONOMIC ENVIRONMENT

4.0 WATERSHED CONDITIONS 4.1 WATER QUALITY OVERVIEW AND PROCESS
4.1.1 Previous Studies and Existing Data4-
4.1.2 Water Quality Standards
4.1.3 Stormwater Runoff
4.2 WATER QUALITY DATA
4.2.1 ADEM Water Quality Monitoring Data4-
4.2.2 Jefferson County Department of Health Water Quality Data
4.3 NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMITS
4.3.1 Municipal Separate Storm Sewer System (MS4) 4-2
4.4 HABITAT CONDITIONS
4.4.1 Invasive Plant Species
4.4.2 Wetlands
4.4.3 Streams
4.4.4 Altered Hydrology
4.5 RESILIANCY
4.6 ACCESS
4.6.1 Land Use and Land Development4-3
4.6.2 Recreational Opportunities
4.7 DATA GAPS
4.7 DATA GAPS
4.7 DATA GAPS
4.7 DATA GAPS 4-3 5.0 IDENTIFY CRITICAL ISSUES 5 5.1 WATER QUALITY AND POLLUTION 5- 5.1.1 Erosion and Sedimentation 5- 5.1.2 Litter Accumulation 5- 5.1.3 Nutrient Loading and Pathogens 5- 5.2 STORMWATER MANAGEMENT AND INFRASTRUCTURE 5- 5.3 LOSS OF NATURAL HABITAT 5- 5.4 PUBLIC EDUCATION AND AWARENESS 5- 6.0 MANAGEMENT MEASURES 6- 6.1 STORM WATER BEST MANAGEMENT 6- 6.2 GREEN INFRASTRUCTURE 6- 6.3 STREAM RESTORATION 6- 6.3.1 In-Stream Restoration and Streambank Stabilization 6- 6.3.2 Stream Buffer Restoration 6-1 6.4 ENCOURAGE IMPROVED FORESTRY AND AGRICULTURE BMPs 6-1
4.7 DATA GAPS

7.0 IMPLEMENTATION 7.1 MANAGEMENT STRATEGIES	
7.2 INTERIM MILESTONES	
7.3 IMPLEMENTATION SCHEDULE	
7.4 INDICATORS TO MEASURE PROGRESS	
7.5 ESTIMATION OF COSTS AND TECHNICAL ASSISTANCE NEEDED	
7.6 EDUCATION PROGRAM	
7.7 LOCAL PROGRAMS	
7.8 EVALUATION FRAMEWORK	
7.9 NEW DATA RECOMMENDATIONS	
7.10 INITIAL IMPLEMENTATION OF MANAGEMENT MEASURES	
8.0 REGULATORY FRAMEWORK	
8.1 REGULATORY FRAMEWORK	_
8.1.1 Federal Authorities	
8.1.2 State Authorities	
8.1.3 County Authorities	
8.1.4 City Authorities	
8.2 REGULATORY OVERLAP	
8.3 REGULATORY DEFICIENCIES	
8.4 ENFORCEMENT	8-8
9.0 FUNDING SOURCES 9.1 INTRODUCTION	0.1
9.1 IN TRODUCTION	
9.2 STORMWATER USER FEES	
9.4 FEDERAL GRANTS, LOANS, AND REVENUE SHARING	
9.4.1 State of Alabama Revolving Loan Fund	
9.4.2 "Green" Stimulus Funding	
9.4.3 Five Star Restoration Program	
9.4.4 Clean Water Section 319(h)	
9.4.5 Wetlands Program Development Grants	
9.5 NON-GOVERNMENTAL ORGANIZATIONS AND OTHER PRIVATE FUNDING	
9.6 IMPACT FEES	
9.7 SPECIAL ASSESSMENTS	
9.8 SYSTEM DEVELOPMENT CHARGES	
9.9 ENVIRONMENTAL TAX SHIFTING	
9.10 CAPITAL IMPROVEMENT COOPERATIVE DISTRICTS	
9.11 ALABAMA IMPROVEMENT DISTRICTS	

-9
-9
-1
-2
-3
-3
-

REFERENCES

TABLES

Table 3.1	Summary of Watershed Area for the Shades Creek Sub-Watersheds	3-1
Table 3.2	Land Use Within Jefferson County for Shades Creek Sub-Watersheds	3-3
Table 3.3	Shades Creek Watershed Waterways	
Table 3.4	Geologic Formations of the Shades Creek Watershed	
Table 3.5	Drainage Classes	3-12
Table 3.6	Monthly precipitation data from the Birmingham Airport	3-15
Table 3.7	Flood Zones	
Table 3.8	Wetland Type (USFWS National Wetland Inventory Map)	3-20
Table 3.9	Federally threatened or endangered species that may occur in SCW	3-26
Table 3.10	Animal Species of Conservation Concern in Jefferson County	3-27
Table 3.11	Population for Jefferson County (1990-2040)	3-28
Table 3.12	Population stats for cities partially or wholly within SCW	3-28
Table 4.1	Summary of primary ambient surface water quality data source	
Table 4.2	ADEM water quality criteria for water use classifications	4-2
Table 4.3	Relative water quality summary assessment of Watershed	4-4
Table 4.4	Land use by category in each watershed of Shades Creek	4-35
Table 6.1	Advantages and Disadvantages of Priority Types	6-10
Table 6.2	CRS Points and Insurance Premium Reduction	6-15
Table 7.1	Shades Creek Watershed Stakeholders	7-1
Table 7.2	Proposed Overall Watershed Planning and Assessment Actions	7-3
Table 7.3	Educational Outreach Strategies, Connectivity & Visibility Strategies	7-5
Table 7.4	Proposed Site Specific BMPs for Identified Issues	7-6
Table 8.1	County Level Regulatory Table	8-8
Table 8.2	Local Level Regulatory Table	8-9
Table 9.1	Federal agencies offering funding programs	9-3
FIGURES		
Figure 1.1	The Shades Creek Watershed boundary	1-1
Figure 2.1	The Nature Conservancy and GMC logos	2-1
Figure 2.2	Open House Flyers for the Shades Creek Watershed Management Plan	2-2
Figure 2.3	Open House Flyers for the Shades Creek Watershed Management Plan	2-2
Figure 2.4	Open House meeting in Homewood	2-3
Figure 2.5	Presentation at Open House meeting	2-3
Figure 2.6	Pie chart from open house showing percentage of comments on specific issues	2-4
Figure 2.7	Pie chart from open house showing percentage of comments on strong points	2-5
Figure 2.8	Pie chart from open house showing preferred BMPs	2-5
Figure 2.9	Results of online survey for how the participants use the various sub-watershed	2-6

Figure 2.10	Results of online survey for the meaning of Shades Creek to the participants	. 2-7
Figure 2.11	Results of online survey regarding the work force segment of participants	. 2-7
Figure 2.12	Results of online survey regarding recreational uses	. 2-8
Figure 2.13	Results of online survey regarding environmental condition of the watershed	. 2-8
Figure 2.14	Results of online survey regarding issues that should be addressed in the watershed .	. 2-9
Figure 2.15	Results of online survey regarding needs within the watershed	. 2-9
Figure 3.1	Shades Creek Watershed Boundaries	. 3-1
Figure 3.2	Shades Creek Watershed Land Use Map	. 3-4
Figure 3.3	Shades Creek Waterways (USGS NHD)	. 3-6
Figure 3.4	Level IV Ecoregions	. 3-8
Figure 3.6	Soil Types	3-10
Figure 3.7	Soil Characteristics (NRCS, 2019)	3-12
Figure 3.8	Topographic Map	3-14
Figure 3.9	FEMA Flood Zones in Cooley Creek-Mud Creek	3-17
Figure 3.10	FEMA Flood Zones in Lower Shades Creek	3-18
Figure 3.11	FEMA Flood Zones in Upper Shades Creek	3-19
Figure 3.12	Wetland Types in Cooley Creek-Mud Creek	3-21
Figure 3.13	Wetland Types in Lower Shades Creek	3-22
Figure 3.14	Wetland Types in Upper Shades Creek	3-23
Figure 3.15	The Palustrine wetland system (from FDGC, 2013)	3-24
Figure 3.16	The Riverine wetland system (from FDGC, 2013)	3-25
Figure 3.17	Population Distribution by Census Tract	3-30
Figure 3.18	Median Household Income	3-31
Figure 3.19	Percent in Poverty	3-32
Figure 4.1	Water quality sampling stations in the Cooley Creek-Mud Creek Watershed	. 4-7
Figure 4.2	Composite time series of DO concentrations in Cooley Creek-Mud Creek Watershed	. 4-8
Figure 4.3	Composite time series of TN concentrations in Cooley Creek-Mud Creek Watershed	. 4-9
Figure 4.4	Composite time series of TP concentrations in Cooley Creek- Mud Creek Watershed	4-10
Figure 4.5	Composite time series of fecal coliform concentration in Cooley/Mud Creek	4-11
Figure 4.6	Composite time series of E. coli concentration in Cooley Creek-Mud Creek	4-12
Figure 4.7	Water quality sampling stations in the Lower Shades Creek Watershed	4-13
Figure 4.8	Composite time series of DO concentrations in the Lower Shades Creek	4-14
Figure 4.9	Composite time series of TN concentrations on Shades and Little Shades Creek	4-15
Figure 4.10	Time series of TP concentrations on Shades Creek & Little Shades Creek	4-15
Figure 4.11	Composite time series of bacteria for multiple ADEM stations on Shades Creek	4-16
Figure 4.12	Composite time series of bacteria concentrations for in Lower Shades Creek	4-17
Figure 4.13	Water quality sampling locations in the upper Shades Creek	4-18
Figure 4.14	Composite time series of DO concentrations in upper Shades Creek	4-19
Figure 4.15	Composite time series of TN concentrations in upper Shades Creek	4-20
Figure 4.16	Composite time series of TP concentrations in upper Shades Creek	4-20
Figure 4.17	Time series of bacteria concentrations in upper Shades Creek	4-21
Figure 4.18	ADEM monitoring site locations in Upper and Lower Shades Creek Watersheds	4-22
Figure 4.19	Additional water quality sampling stations in the Upper Shades Creek Watershed 4	4-23
Figure 4.20	Composite time series of DO concentrations in upper Shades Creek	4-24
Figure 4.21	Composite time series of fecal concentrations in upper Shades Creek	4-25
Figure 4.22	Composite time series of E. coli concentrations in upper Shades Creek	4-26
Figure 4.23	Example of Chinese Privet (Courtesy of The Nature Conservancy)	4-28
Figure 4.24	Example of Kudzu (Courtesy of Kudzu © reophax/Flickr Creative Commons)	4-28

Figure 4.25	Example of Cogongrass (courtesy of Alabama Cooperative Extension Service)
Figure 4.26	Example of Chinese Tallow or Popcorn Tree (Courtesy of AL Forestry Commission) 4-30
Figure 4.27	Japanese Climbing Fern (Photo credit: Nancy Loewenstein, Auburn University) 4-30
Figure 4.28	Example of Eurasian Watermilfoil
Figure 4.29	Example of Hydrilla (Photo credit: C. Smoot Major, University of South Alabama) 4-31
Figure 4.30	Alligatorweed (Photo credit: C. Smoot Major, University of South Alabama)
Figure 4.31	General overview of the hydrologic cycle (from Shultz, 2017)
Figure 5.1	Erosion and sediment runoff post rain event on bulldozed site
Figure 5.2	Streambank Erosion in Irondale, Shades Creek Watershed5-2
Figure 5.3	Trash under bridge in Shades Creek5-3
Figure 5.4	Algae bloom resulting from excessive nitrate and phosphate concentrations
Figure 6.1	Typical BRC Profile (ACES 2016)
Figure 6.2	Typical Profiles of Enhanced Swales (ACES 2016)
Figure 6.3	Example of Permeable Pavement
Figure 6.4	Typical CSW Profile
Figure 6.5	Conceptual cross section of Priority 1 restoration (Doll et al, 2003) 6-8
Figure 6.6	Conceptual cross section of Priority 2 restoration (Doll et al, 2003)
Figure 6.7	Conceptual cross section of Priority 3 restoration (Doll et al, 2003)
Figure 6.8	Riparian buffer zone diagram (LID Handbook for Alabama, 2014)
Figure 6.9	Litter control device in Griffin Brook (Source: Freshwater Land Trust website)

APPENDICES

Appendix A:	ArcGIS StoryMap on-line survey results
Appendix B:	Alabama Inventory List for Rare, Threatened and Endangered Plants & Animals of Alabama
Appendix C:	Alabama's Best Management Practices for Forestry Handbook
Appendix D:	Natural Resources Conservation Service Conservation Catalogue for Alabama

In 2019, Goodwyn Mills Cawood (GMC) was contracted by The Nature Conservancy (TNC) to conduct a comprehensive Watershed Management Plan (WMP) for the Shades Creek Watershed located adjacent to Birmingham, Alabama. The greater Shades Creek Watershed as defined by this WMP is the geographical area identified by the following U.S. Geological Survey (USGS) 12-digit hydrologic unit codes (HUCs): HUC 031502020302 (Cooley Creek-Mud Creek), HUC 031502020303 (Lower Shades Creek), and HUC 031502020301 (Upper Shades Creek) (USGS, 2017). The Shades Creek Watershed encompasses approximately 139 square miles within Jefferson County as well as small portions of Tuscaloosa, Shelby and Bibb Counties as shown in **Figure 1.1** (USGS, 2017). The headwaters of Shades Creek begin near Irondale at the northeastern corner of Jefferson County.

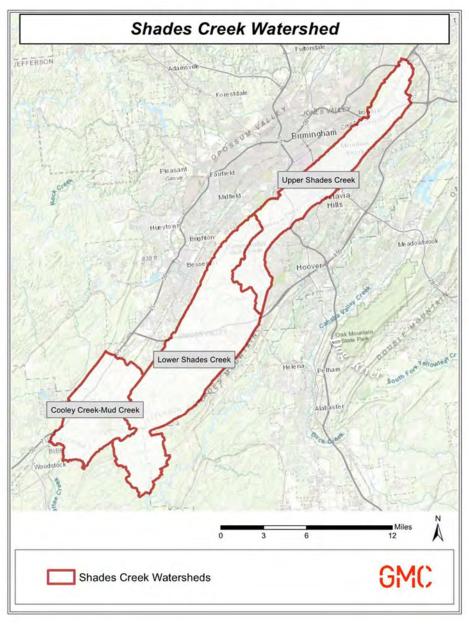


Figure 1.1: The Shades Creek Watershed boundary

1.1 PLAN OVERVIEW

The purpose of this project is to develop a nine-key element WMP for the Shades Creek Watershed. The referenced Watershed was chosen for this project because it is a heavily impacted watershed which is a tributary to the Cahaba River. The Cahaba River is a drinking water source as well as a prime recreation spot. Watershed planning is a comprehensive, collaborative way to plan for the protection and improvement of Shades Creek water quality. Watershed planning involved gathering local stakeholders to share their knowledge, concerns, and ideas in developing the plan. The knowledge gathered from stakeholders, water quality data, background research, and proposed best management practices will be used to guide the reduction of sources of pollution. There has not been another study or Watershed Plan in the Shades Creek Watershed that was completed prior to this WMP.

Shades Creek and Cooley Creek-Mud Creek have had two separate Total Maximum Daily Load (TMDL) documents that addressed Fecal Coliform in addition to Siltation, Turbidity, and Habitat Alteration.

TNC has already identified some preliminary issues of concern which include:

- 1. Stream Erosion
- 2. Lack of Public Access
- 3. Sedimentation in Streams
- 4. Nutrient Levels
- 5. Land Development
- 6. Stormwater Runoff

This WMP aims to address all of these initial issues and provide detailed characterization for the Shades Creek Watershed. To achieve these goals, TNC identified a need for comprehensive watershed planning within the greater Shades Creek Watershed.

The Shades Creek Watershed's population, traffic, and impervious surfaces collectively affect not only the health of the Shades Creek Watershed, but also the health of the Cahaba River Basin. Realizing this, the Shades Creek Watershed was identified as a high priority for watershed planning in order to preserve and improve its existing environmental quality and the quality of the Cahaba River Basin.

1.2 PLAN PURPOSE

The purpose of the Shades Creek WMP is to guide watershed resource managers, policy makers, community organizations, and citizens to protect the chemical, biological, and cultural integrity of the greater Shades Creek Watershed, and specifically its waters and habitats supporting healthy populations of fish and wildlife and providing recreation in and on these waters of suburban Alabama.

1.3 PLAN VISION

The vision of the Shades Creek WMP is a healthy watershed environment by fostering the coordinated effort to protect, restore, and enhance the overall quality of life by preserving and restoring water quality, natural habitats, biological resources, and recreational resources.

1.4 GOALS AND OBJECTIVES

Public engagement and participation are critical to the success of the WMP development and implementation. Two open houses were advertised to the public and held from 4:00 PM – 7:00 PM (CST) on February 11, 2020, at the Homewood City Hall, and February 25, 2020, at the Tannehill Historic State Park Cane Creek School House. There were approximately 40 participants present between these two public meetings. At these open houses, a short presentation was given explaining the watershed characteristics, known issues, and the WMP process and needs. Citizens and stakeholders were encouraged to complete a survey, identify locations and issues on provided watershed maps, and provide their opinions and feedback in regards to the WMP. During these meetings, the following goals were established:

- 1. Improve water quality to support a healthy stream ecosystem (sediment, trash, nutrients, and pathogens)
- 2. Protect natural areas to biological/ecological integrity of the watershed.
- **3.** Reduce flooding issues utilizing hydrologic modeling, identifying flood storage, and implementing green infrastructure and low impact development technologies.
- 4. Promote and improve access with interpretive signage and access points.

Photo Credit: Friends of Shades Creek (<u>https://shadescreek.org/</u>)

Determining the success or failure of implementing management efforts to improve water quality, protect natural areas, reduce flooding, and promote and improve public access requires a reasonable means of measurement. The objectives of the Shades Creek WMP are to conform to the nine key elements of watershed planning defined by the U.S. Environmental Protection Agency (EPA), as outlined in **Section 1.6.1**. Specific monitoring protocols, best management practices (BMPs) and milestones to restore and maintain water quality can be found in subsequent chapters.

1.5 WATERSHED PLANNING COMMITTEES

1.5.1 Steering Committee

A Steering Committee comprising diverse stakeholders was established to guide the planning process. This group represented a cross-section of the community and included residents from different geographic locations across the greater Shades Creek Watershed as well as representatives from businesses, civic groups, environmental organizations, and government agencies. The Steering Committee acted as a working group serving as advocates and helped to make recommendations about the process and the substance of the vision.

The Shades Creek WMP Steering Committee was established to be a working group with a number of critical responsibilities related to 1) the planning process and 2) development of recommendations for the plan. These responsibilities include:

- Attend committee meetings (4 over the 15 months of the project)
- Represent residents and other stakeholders in the planning process
- Provide guidance and direction to the staff and consultants
- Act as spokespersons for the planning effort
- Serve as hosts at public events during the process
- Identify volunteers to support the process (i.e., distributing promotional materials, serving on outreach sub-committees, etc.)
- Volunteer to assist with community meetings
- Disseminate information during the planning process (using individual networks)
- Participate in formalizing and presenting the recommendations before appropriate recommending and adopting bodies
- Serve as stewards of the WMP once it is adopted

The Shades Creek Watershed Steering Committee Members:

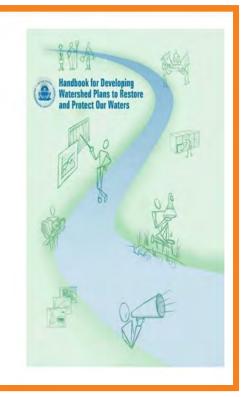
Amanda Locascio, Non-Point Source Unit Manager – ADEM Shannon McGlynn, Non-Point Source Unit Manager – ADEM Christopher Brady – City of Vestavia Hills

Jennifer Andress, City Council – City of Homewood Joshua Yates, Deputy Director of Public Works – City of Birmingham David Spivey, City Council – City of Irondale Mac Martin, City Planner – City of Hoover Freddie Freeman, Stormwater Specialist – City of Bessemer Virginia Caruthers Smith, City Council – City of Mountain Brook Doug Neil, Private Developer – Redmont Consulting Group Nan Baldwin, VP of Regional Development – Birmingham Business Alliance Scott Hofer, Public Health Engineer – Jefferson County Department of Health Stefan Graeber, Deputy Director & Assistant County Engineer – Jefferson County Amanda Elledge, Environmental Biologist – Jefferson County Jeff Gunter, Chief Civil Engineer – Jefferson County

1.5.1 Other Committees and Community Input

Community input from several other sources were utilized during the planning and development of this WMP. These sources included a technical advisory committee and individuals with extensive knowledge of the watershed and issues within the watershed. The following is a list of entities that provided valuable data and field knowledge for the completion of this WMP.

- The Nature Conservancy
- Cahaba River Society
- Cahaba Riverkeepers
- Friends of Shades Creek
- Freshwater Land Trust
- Alabama Department of Transportation
- Birmingham Southern College
- Samford University
- City of Birmingham Stormwater
- Birmingham Historical Society
- Natural Resources Conservation Service
- Cawaco RC&D Council
- Citizen Volunteers


1.6 EPA NINE KEY ELEMENTS

The EPA has identified nine key elements of watershed planning that are critical for achieving improvements in water quality. These nine elements and their relevant sections in this WMP are as follows:

The objectives of the planning process are to conform with the listed nine key elements of watershed planning defined by the EPA and are indicated parenthetically below:

- Build partnerships, including identification of key stakeholders and solicitation of community input and concerns.
- Characterize the Watershed, including creation of a natural and cultural resource inventory, identification of causes and sources of impairments, identification of data gaps and estimation of pollutant loads (1).
- Set goals and identify solutions, including determination of pollutant loads needed and management measures to achieve goals (2-3).
- 4. Design implementation program, including schedule, interim milestones, criteria to measure progress, monitoring component, information/education program, and identification of technical and financial assistance needed to implement plan (4-9).

The EPA Handbook for Developing Watershed Plans to Restore and Protect Our Waters water.epa.gov/polwaste/nps/handbook_index.cfm

2.1 STAKEHOLDER INVOLVEMENT

Stakeholder involvement was important to the creation of the Watershed Management Plan (WMP) because it allowed the community to share its aspirations for the future. This is critical to generating a shared understanding about the value of the plan, informing its priorities, and providing the broad base of support necessary to ensure its implementation. Stakeholder involvement included leadership from a Steering Committee that guided the process from start to finish and input from the general public through workshops, a survey, and open houses. Stakeholder involvement efforts were led by The Nature Conservancy (TNC) and Goodwyn Mills Cawood (GMC).

GMC

Figure 2.1: The Nature Conservancy and GMC logos

2.2 OPEN HOUSE COMMUNITY MEETINGS

Two open house community meetings were held in two different areas of the Watershed (but covering the same content) on February 11 and 25, 2020 at Homewood City Hall and Tannehill State Park, respectively. The purpose of the community meetings was to create a shared understanding about the condition of the Shades Creek Watershed and to share ideas about what will make it better.

2.2.1 Outreach and Publicity

The Nature Conservancy (TNC), GMC, and the Steering Committee pursued a comprehensive outreach and publicity plan for the open house meetings in an effort to attract a wide range of interested individuals. Outreach and publicity efforts included the following:

- Establishment of a website (gmcplanning.com/ShadesCreek)
- Promotion on Ruffner Mountain website
- Promotion on the Friends of Shades Creek (FOSC) website
- Booth and printed media at local festival (Salamander Festival)
- Presentation at FOSC and Cahaba River Society (CRS) monthly meeting
- Presentation at the Alabama Rivers and Streams Network
- Presentation at TNC monthly board meeting
- Presentation at the Collaborative Environmental Network of Alabama (C.E.N.A.)
- Table and printed media at the CRS annual meeting
- Email blasts to lists from relevant area organizations

- Distribution of printed media Cawaco Resource and Conservation District
- Distribution of printed media to the county Soil and Water Conservation Districts (Jefferson, Shelby, and Bibb)
- Municipal public notice advertisements
- Flyers mailed to individual landowners
- Social media posts of relevant area organizations

Figures 2.2/2.3: Flyers distributed to advertise for the Shades Creek Watershed Management Plan Open House Community Workshops

2.2.2 Open House Meetings Program

The meetings were designed around two different tasks, the first being an approximate twenty-minute formal presentation on an overview of the watershed planning process. During the presentation, previously completed research on watershed characterization and conditions information, was given by the facilitators. The formal presentation was concluded by introducing the second task, seven (7) small group stations that provided an opportunity for the public to provide comments on each topic. During the small group station discussion, individual station moderators had maps and other supplemental material for meeting participants to review, discuss and provide commentary. The individual station discussion allowed for a dialogue between the participants to better understand the values of the of the community and their relationship to the watershed planning process. The following is a brief description of each station and the content for each station.

- 1. <u>SIGN-IN AND GENERAL OVERVIEW</u> This station provided an opportunity for the public to sign in and access general information in the form of flyers. A TNC or GMC representative was also available to provide information and answer any questions about the watershed management plan.
- <u>STORY MAP</u> This station was established to assist people in accessing the Shades Creek WMP webpage. The intent of this station was to educate interested parties on how to access information and navigate the online resources. In addition, the public could provide comments on how to make the story map more efficient or useful.
- <u>SURVEY</u> This station was established to provide the public an opportunity to complete the survey discussed in Section 2.3 below. The station provided printed hard copies of the survey, several computers with access to the survey, and the ability to scan a QR code and take the survey from a mobile device.
- 4. <u>ISSUES</u> A large roll out map of the entire watershed was provided along with numbered stickers and printed note sheets. The intent was to give the public an opportunity to inform the planning team of any watershed issues. In addition, it provided the public an opportunity to provide recommendations on how to resolve the issues.
- <u>STRONG PLACES</u> A large roll out map of the entire watershed was provided along with numbered stickers and printed note sheets. The intent of this station was to give the public an opportunity to inform the planning team of places in the watershed that bring cultural, biological, ecological, or aesthetic value to the watershed.
- <u>BEST MANAGEMENT PRACTICES</u> This station was established to give the public an opportunity to express what potential Best Management Practices (BMP's) they would like to see in the watershed. Each participant received 4 stickers and placed them on the BMP's they deemed most important. BMP's included various green infrastructure, litter removal, public access (trails, parks, etc.), restoration activities, and preservation BMP's.
- <u>FUNDING OPPORTUNITES</u> This station was established to provide information regarding ADEM's 319 funding program and to give the public the opportunity to let the planning team know of other funding opportunities at the federal, state, and local level (public and private).

Figure 2.4: Open House meeting in Homewood

Figure 2.5: Presentation at Open House meeting

2.2.3 Results

An estimated 40 people attended the two workshops. A total of five printed surveys were completed along with numerous participants completing the online survey. A total of approximately 58 issues and approximately 32 strong points were identified in the watershed. In addition, seventy-one stickers were placed on the BMP board that contained 14 BMP's. The responses were organized into similar categories and graphed to depict the issues, the important watershed features, and the preferred BMP's among the stakeholders.

Figure 2.6 shown below is a representation of comments regarding issues and concerns in the watershed. As indicated in **Figure 2.6**, 21% of the commenters were concerned with erosion, followed by flooding (19%), promotion and public access (17%), water quality and pollution (15%), stormwater and infrastructure issues (9%), litter (7%), stormwater management (5%), stream/wetland impairments (5%), and invasive species (2%).

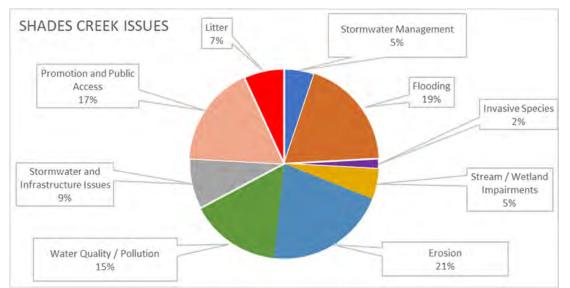


Figure 2.6: Based on comments from the open house meeting, the pie chart shows the percentage of comments on specific issues in the Shades Creek Watershed.

Figure 2.7 is a representation of comments regarding areas of the watershed that bring specific value to the watershed. As indicated in **Figure 2.7**, 37% of the commenters indicated area that contained recreational value (hiking, biking, birding, and canoeing), followed by scenic views (28%), cultural values (16%), ecological and biological values (13%), and educational values (6%).

Λ

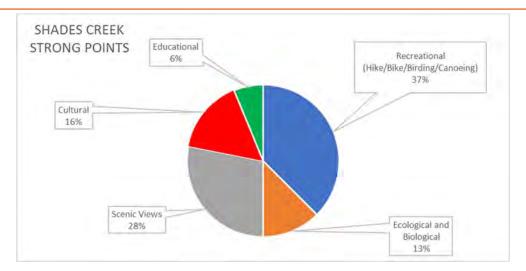


Figure 2.7: Based on comments from the open house meeting, the pie chart shows the percentage of comments regarding the strong points in the Shades Creek Watershed.

Figure 2.8 is a representation of the selection of preferred BMPs made by commenters. There was a total of fourteen BMPs listed and commenters were able to select a maximum of four BMPs. As indicated in **Figure 2.8**, 18% of the commenters selected bioretention, followed by trails (14%), streambank stabilization (13%), riparian buffers (9%), permeable pavements (9%), in-stream restoration (7%), green streets (6%), urban forestry (6%), litter removal and prevention (4%), land preservation (4%), wetland restoration (4%), passive parks (4%), ecotourism facilities (1%), and green and blue roofs (1%).

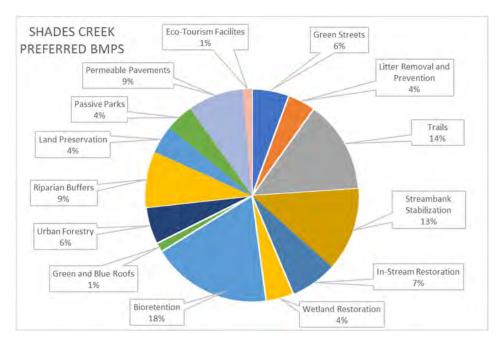
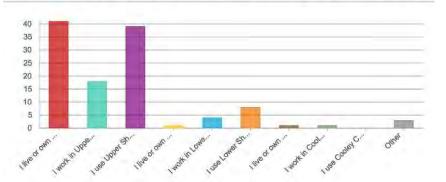


Figure 2.8: Based on comments from the open house meeting, the pie chart shows the percentage of specific BMP's preferred in the Shades Creek Watershed.


5

2.3 ONLINE SURVEY

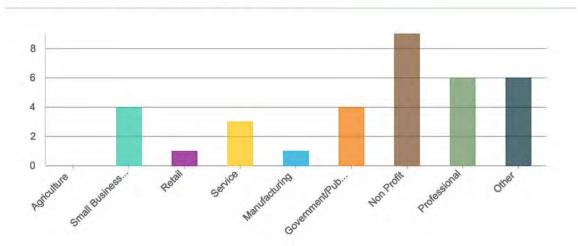
In addition to public workshops, the Shades Creek Watershed planning team advertised and provided an online survey to stakeholders in the watershed. In addition to availability on the Shades Creek Watershed website, the survey was advertised and made available during the open house meetings, during local presentations, on social media, and on printed flyers that were distributed to interested parties. The following is a description of the questions asked for the online survey and a summary of the responses received:

PARTICIPANTS INTERESTS IN THE SUB-WATERSHEDS COMPRISING THE SHADES CREEK WATERSHED: Participants
were asked which of the three Shades Creek sub-watersheds applies to their interests (multiple answers allowed).
A total of 67% of participants lived or owned property in the Upper Shades Creek, 64% use the Upper Shades Creek
for recreation, and 29.5% work in the Upper Shades Creek. A total of 13% use the Lower Shades Creek for recreation,
6.5% work in the Lower Shades Creek, and 1.6% live or own property in the Lower Shades Creek. A total of 1.6% of
participants work or live/own property in the Cooley Creek/Mud Creek and 4.9% listed "Other" as their answer. The
following Figure 2.9 provides a graphical depiction of this survey question.

Using the map above as a guide, which of the three Shades Creek Watersheds applies to your interests (check all t...

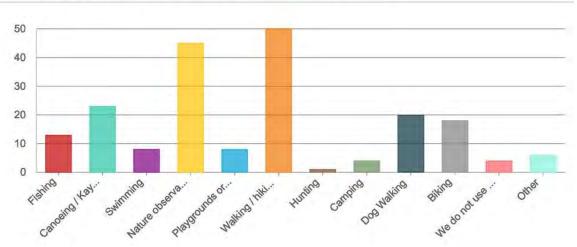
Answers	Count	Percentage
I live or own property in Upper Shades Creek	41	67.21%
I work in Upper Shades Creek	18	29.51%
l use Upper Shades Creek for recreation	39	63.93%
I live or own property in Lower Shades Creek	4	1.64%
I work in Lower Shades Creek	4	6.56%
use Lower Shades Creek for recreation	8	13.11%
I live or own property in Cooley Creek/Mud Creek	-i	1.64%
I work in Cooley Creek/Mud Creek	- 1	1.64%
I use Cooley Creek/Mud Creek for recreation	D	0%
Other	3	4.92%

Answered: 59 Skipped: 2


Figure 2.9: Results of online survey for how the participants use the various sub-watershed

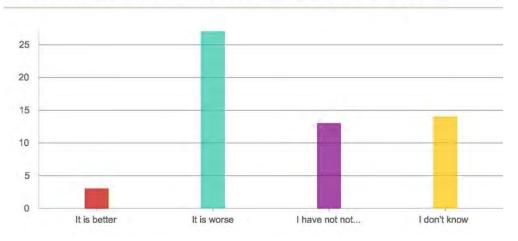
MEANING OF SHADES CREEK: Participants were asked to describe in a few words, the meaning of Shades Creek to them. The words were counted and to determine the common meaning upon participants. The following Figure
 2.10 is a visual depiction of the most common words shared, with the larger words representing the words mentioned most frequently.

Figure 2.10: Results of online survey for the meaning of Shades Creek to the participants


3. TYPE OF WORK PARTICIPANTS DO IN WATERSHED: Participants that work in the watershed were asked to indicate what segment of the work force they are in. A total of 14.75% indicated that they worked for a non-profit, 9.8% indicated professional or other, 6.56 were government/public sector and small business owners, 4.9% in the service industry, and 1.6% in the retail and manufacturing category. The following Figure 2.11 provides a graphical depiction of answers to this survey question:

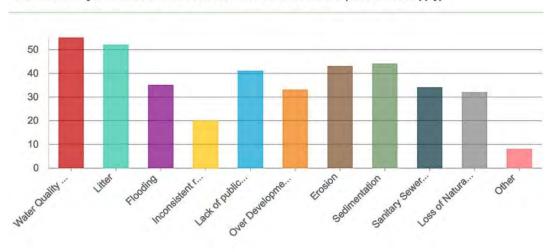
If you work in the watershed, what type of work do you do?

Figure 2.11: Results of online survey regarding the work force segment of participants


4. RECRATIONAL USES: Participants were asked how they and/or their families use the Shades Creek Watershed for recreational purposes. A total of 82% of participants use the Shades Creek Watershed for walking/hiking, 73.7% us it for natural observation, 37.7% for canoeing and kayaking, 32.8% for dog walking, 29.5% for biking, 21.3% for fishing, 13.1% for swimming and playgrounds/ballfields, 9.8% listed as other, 6.5% for camping or no recreational use, and 1.6% for hunting. The following Figure 2.12 provides a graphical depiction of answers to this survey question:

How do you, or your family, use the Shades Creek watersheds for recreation?

Figure 2.12: Results of online survey regarding recreational uses


5. ENVIRONMENTAL CONDITION OF THE WATERSHED: Participants were asked their thoughts on the environmental condition of the watershed today versus five years ago. A total of 44.3% indicated that they thought the watershed was in worse condition today, 23% indicated that they did not know if it was better or worse, 21.3% indicated that they had not noticed a change, and 4.9% indicated it was better today than it was five years ago. The following Figure 2.13 provides a graphical depiction of answers to this survey question:

What do you think of the environmental conditions of the watershed Today versus 5 years ago?

Figure 2.13: Results of online survey regarding environmental condition of the watershed

6. WATERSHED ISSSUES NEEDING TO BE ADDRESSED: Participants were asked what issues they think needs to be addressed within the watershed. A total of 90.2% indicated that water quality/pollution needs to be addressed, 85.3% indicated litter as an issue, 72.1% indicated sedimentation as an issue, 70.5% indicated erosion, 67.2% indicated lack of public education/awareness as an issue, 57.4% selected flooding, 55.7% noted sanitary sewer overflows, 54.1% noted overdevelopment/urbanization, 52.5% noted loss of natural areas as an issue, 32.8% noted inconsistent regulations as an issue, and 13.1% noted "other". The following Figure 2.14 provides a graphical depiction of answers to this survey question:

What issues do you think need to be addressed within the watershed? (check all that apply)

Figure 2.14: Results of online survey regarding issues that should be addressed in the watershed

7. NEEDS WITHIN THE WATERSHED: Participants were asked their input on what is needed in the watershed. A total of 86.9% of responders indicated habitat conservation is needed, 83.6% noted preservation of natural areas, 44.3% noted public access and trash facilities as a need, 36.1% noted preservation of historic sites and dog waste receptacles, 16.4% listed park benches and picnic tables, and 11.5% noted public restrooms and "other" as needs in the watershed. The following Figure 2.15 provides a graphical depiction of answers to this survey question:

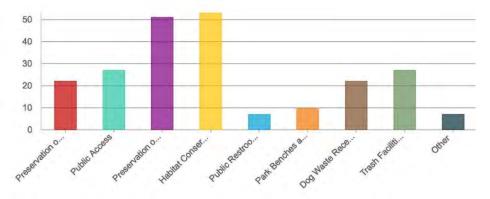


Figure 2.15: Results of online survey regarding needs within the watershed

- 8. SPECIFIC ISSUES NOTED ON A MAP: Participants were provided an interactive map where they cold denote specific issues within the watershed that they perceived as a problem. In addition, participants noted the type of issue that was noted on the map. The results of these noted issues by percentage are as follows:
 - Water Pollution 16.4%
 - Erosion 13.1%
 - Litter 13.1%
 - Loss of Habitat 6.5%
 - Flooding 4.9%
 - Sedimentation 4.9%
 - Other 4.9%
 - Over Development 1.6%
 - Unanswered 35%
- 9. OPTIONAL DEMOGRAPHIC QUESTIONS: The last two questions of the survey were optional and included one question asking the age of the participant and one question asking the gender of the participant. The results of these questions indicated that a total of 42.6% of the respondents were between the ages of 40 and 60, 36.1% were over the age 60, 8.2% between the ages 18 and 24, and 8.2% between the ages 25 and 39. A total of 49.1% of the responders were female and 47.5% male, with 2 participants leaving this question unanswered.

The Shades Creek Watershed (SCW) is comprised of the Cooley Creek/Mud Creek, Upper Shades Creek and Lower Shades Creek watersheds, encompassing a total area of approximately 88,752 acres (139 square miles). The watershed is shown in **Figure 3.1**. Major transportation routes include Interstates 459, 65, and 20.

3.2 WATERSHED BOUNDARY

The boundary of the Shades Creek Watershed is determined by the topography and hydrography of the area. A topographic map illustrates natural and man-made features on the surface area of the land with contour lines delineating the elevation changes. Hydrography includes the study of the movement of water as it crosses the surface of the land. Therefore, the outer-most boundaries of the SCW are located where the water travels between the mountains of the region and converge with the Cahaba River.

Located in Jefferson, Shelby, Bibb, and Tuscaloosa Counties, Alabama, the Shades Creek Watershed as defined by this Watershed Management Plan (WMP) is the geographical area identified by the following U.S. Geological Survey (USGS) 12-digit hydrologic unit codes (HUCs): HUC 031502020302 (Cooley Creek-Mud Creek), HUC 031502020303 (Lower Shades Creek), and HUC 031502020301 (Upper Shades Creek) (USGS, 2017). The amount of area contained within each sub watershed in the Shades Creek Watershed is summarized in the table below.

Sub-Watershed	Area (Acres)	Area (Square Miles)
Cooley Creek-Mud Creek	17,905.75	27.98
Lower Shades Creek	44,466.57	69.48
Upper Shades Creek	26,395.85	41.24
TOTAL	88,768.16	138.70

Table 3.1 Summary of Watershed Area for the Shades Creek Sub-Watersheds

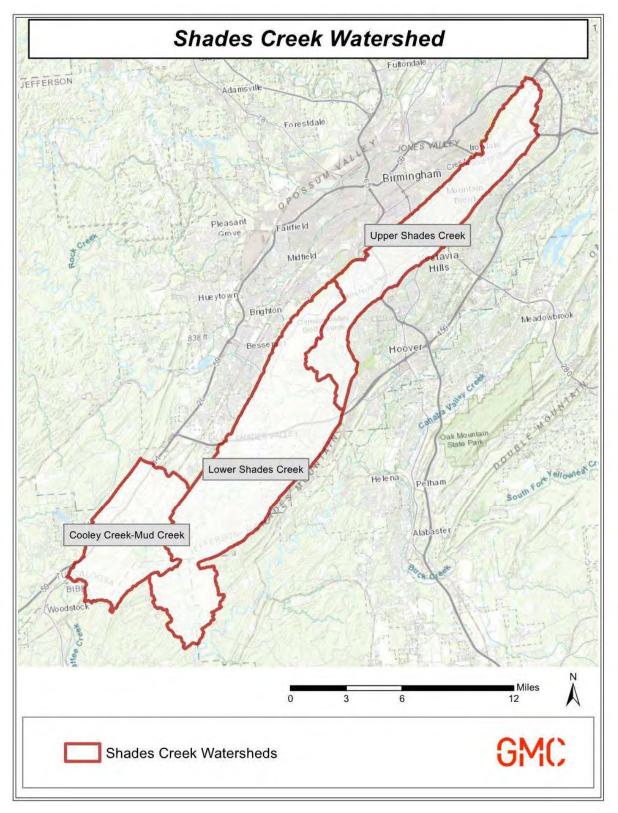


Figure 3.1 Shades Creek Watershed Boundaries

3.3 LAND USE

Land use data was derived from land cover information acquired from the National Land Cover Database (NLCD) for 2016. The NLCD is made available by the Multi-Resolution Land Characteristics (MRLC) Consortium which is a group of federal agencies who generate land cover information at the national scale for public use. The table below summarizes land uses types and areas within each of the sub-watersheds within the SCW.

Sub-Watershed	Cooley-Mud Creek		the Shades Creek Sub-Wate Lower Shades Creek		Upper Shades Creek	
Land Use	(Acres)	(%)	(Acres)	(%)	(Acres)	(%)
Agricultural	1,620.10	21.3%	2,810.41	8.1%	43.71	0.2%
Cultural and Recreation	340.34	4.5%	389.83	1.1%	1,838.05	8.7%
General Commercial	3.52	0.05%	81.32	0.2%	792.11	3.8%
General Industry	1.64	0%	166.14	0.5%	27.86	0.1%
Heavy Commercial	3.32	0.05%	515.95	1.5%	227.69	1.1%
Heavy Industry	16.96	0.2%	223.52	0.6%	601.79	2.9%
High-Density Residential					543.38	2.7%
Institutional	46.59	0.6%	0.79	0%	604.30	2.9%
Light Commercial					7.99	0%
Light Industry	475.06	6.2%	426.22	1.2%	722.28	3.4%
Low Density Residential	927.67	12.2%	4,088.86	11.8%	4,889.98	23.2%
Medium Density Residential	0.68	0%	265.08	0.8%	1,471.57	7%
Mobile Homes	68.38	0.9%	382.01	1.1%	42.14	0.2%
Non-Classifiable S.I.C. Codes			9.36	0.1%	133.57	0.6%
Office	16.14	0.2%	128.33	0.4%	737.06	3.5%
Other	37.51	0.5%	70.88	0.2%		
Utility	4.57	0.1%	31.06	0.1%	132.70	0.6%
Vacant or Undeveloped	4,046.17	53.2%	25,169.42	72.4%	8,244.50	39.2%
TOTAL	7,608.64		34,759.18		21,060.65	

*Land Use date for Tuscaloosa, Bibb, and Shelby County not included in this table.

The majority of the Upper Shades Creek Watershed lies adjacent to the City of Birmingham and within Jefferson County. The majority of the watershed is highly developed with commercial, industrial, and high-density residential uses and includes the fast-growing cities of Homewood and Mountain Brook. It has the least amount of undeveloped land in Jefferson County compared to the other watersheds. The Lower Shades Creek Watershed has the largest amount of undeveloped land in Jefferson County at 72% and Colley-Mud Creek is the next with 53%. A map of the land uses within the SCW is shown in **Figure 3.2**.

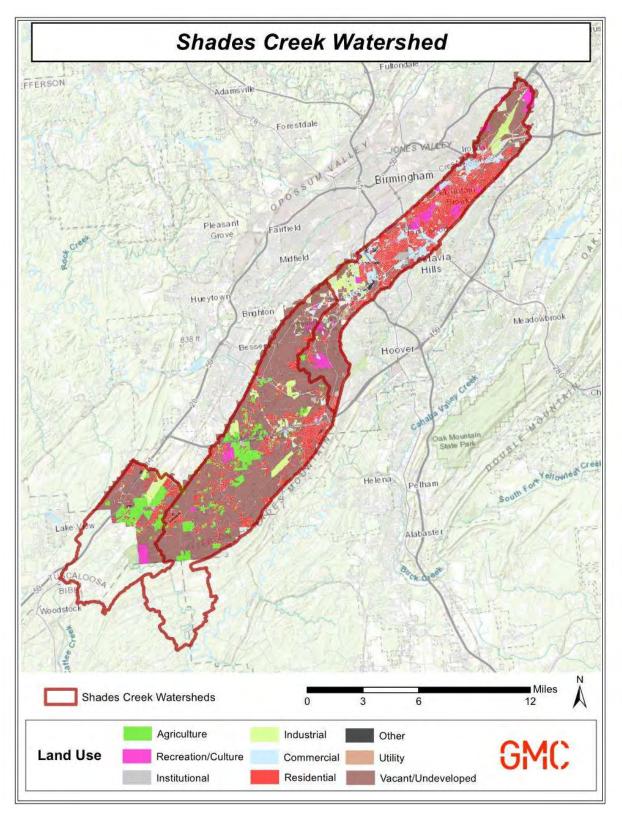


Figure 3.2 Shades Creek Watershed Land Use Map

3.4 SURFACE WATER

There are named tributaries and streams in all three watersheds within the Shades Creek Watershed. The tributaries are as follows:

Table 3.3 Shades Creek Watershed Waterways (USGS National Hydrography Dataset (NHD))

Watershed	Total Length of Waterways (LF)	Total Length of Waterways (miles)
Cooley Creek-Mud Creek Mud Creek Cooley Creek Mill Creek Unnamed Drainages 	302,190.60	57.23
Lower Shades Creek Black Creek Clear Branch Bob George Branch Rice Creek Allen Brook Rocky Brook Unnamed Drainages	870,892.26	164.94
Upper Shades Creek Shades Creek Griffin Branch Watkins Brook Unnamed Drainages 	383,540.46	72.64

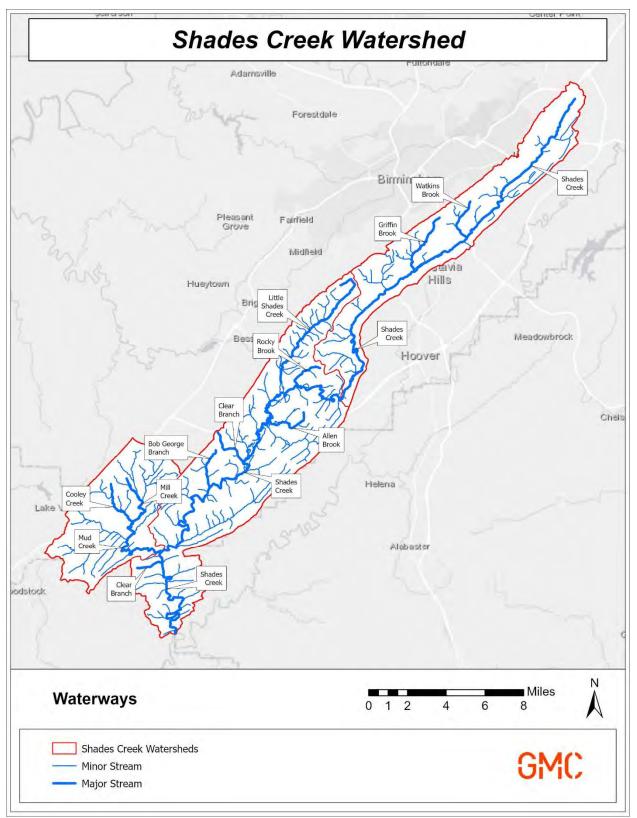


Figure 3.3: Shades Creek Waterways (USGS NHD)

3.5 PHYSICAL SETTING

3.5.1 Ecoregions

Ecoregions are areas having a similar ecosystem and environmental resources. Ecoregions are identified and mapped based on characteristics including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The SCW lies within the Ridge and Valley (Level III) Ecoregion which extends from Alabama through the Appalachian Mountain chain to Northeast United States (U.S. EPA, 2013). As shown in **Figure 3.4**, the SCW lies within three Level IV subcategories of the Ridge and Valley:

- Southern Sandstone Ridges
- Southern Shale Valleys
- Southern Limestone/Dolomite Valleys and Low Rolling Hills

Most of the SCW is within the Southern Sandstone Ridges which is characterized by steep, forested ridges of Coosa and Cahaba ridges with narrow crests. Deposits consist of stony and sandy soils of younger Pennsylvania-age sandstone and shale. Streams flow down ridges and vary greatly depending on the geologic material. With the most topographic relief, elevations typically range from 300 – 800 feet.

Shades Creek lies within the Southern Shale Valley region characterized by rolling valleys and rounded hills. Soils are weathered from shale, limestone, and clays. Flatter land in this region is used for agriculture like soybeans, corn, and hay, while steeper slopes are majority pastureland. Elevations range from 700 – 450 feet.

The western portion of the watershed where Cooley-Mud Creek sub-watershed originates is located in a portion of the Southern Limestone/Dolomite Valley and Low Rolling Hills ecoregion. This area consists of valleys and rounded hills with oak and pine forests, as well as some caves and springs. Geology includes limestone and cherty dolomite. Agriculture is characteristic of the region within this watershed (Ecoregions of Alabama and Georgia, 2001).

The intersection of three Level IV subcategories with the Shade Creek Watersheds demonstrates the variability and great diversity of habitats within Alabama. Rapidly transitioning stream habitats, separated by rugged stream channels, isolates species populations, causes genetic isolation, and creates new species. As a result, Alabama has the greatest biodiversity of any region in North America (Alabama Water Watch, 2016).

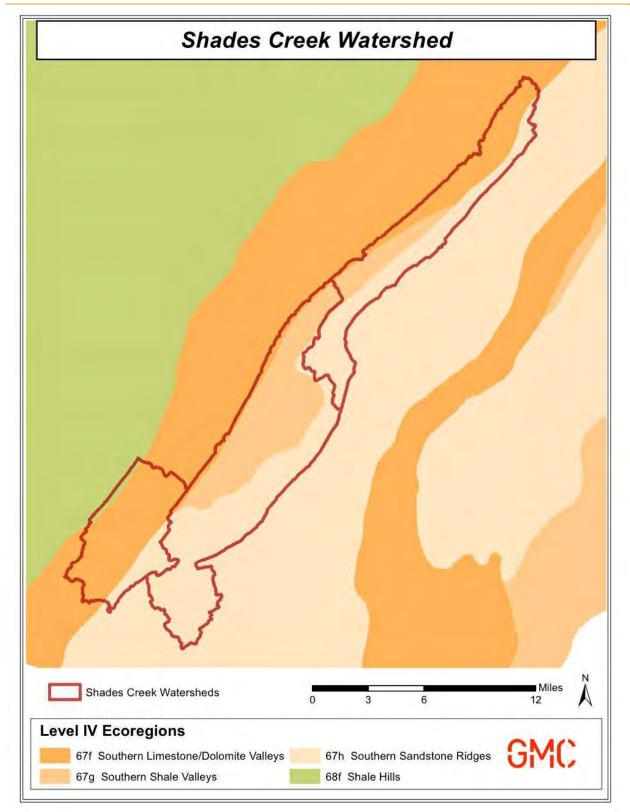


Figure 3.4: Level IV Ecoregions

3.5.2 Geology

The Shades Creek Watershed lies within the Cahaba Ridges District of the Valley and Ridge Physiographic Section (Sapp and Emplaincourt, 1975). The Cahaba Ridges District consist of a series of parallel northeaststriking ridges formed by gently folded sandstone and conglomerate rocks separated by valleys underlain by softer shale. The folded sedimentary rocks strike north-east-southwest. Anticlines and thrust fault structures occur. The structures within the Valley and Ridge Physiographic Section were created by the formation of the supercontinent Pangea. The collision of the proto–North American and Eurasian tectonic plates created the ancestral Appalachian Mountains. The foothills of the Appalachian Mountains extend through the Shades Creek Watersheds and southward to just north of Montgomery, Alabama.

The Shades Creek Watershed is underlain by geologic formations from the Mississippian and Pennsylvanian Systems; the Cooley and Mud Creek Watersheds are underlain by formations of the Cambrian, Ordivician, and Mississippian Systems. Geologic formations in the Shades Creek Watershed include the Hartselle Sandstone, Floyd Shale, Parkwood Formation, and Pottsville Formation. The Cooley and Mud Creek Watersheds are underlain by the Conasauga Formation, the Copper Ridge Dolomite, Chickamauga Limestone, and the Tuscumbia Limestone and Fort Payne Chert. The geologic formations present are summarized in **Table 3.4**.

Watershed	Geologic Formation	Geologic Age	Predominant Lithology	Significant Features	
	Hartselle Sandstone	Mississippian	Quartzose sandstone w/ interbeds of dark-gray shale.	Formerly mined for sand near Irondale	
Shades Creek	Floyd Shale	Mississippian	Black to dark-gray, marine shale, limestone and chert	Source of natural gas in western	
	Parkwood Formation	Mississippian	Shale, sandstone; mudstone, argillaceous limestone, and clayey coal	Not fossil bearing	
	Pottsville Formation	Pennsylvanian	Sandstone, siltstone, shale, and coal	Source of coal for the steel industry	
	Conasauga Formation	Cambrian	Argillaceous limestone and interbedded dark-gray shale	Fossil bearing strata including Trilobites	
	Copper Ridge Dolomite	Cambrian	Siliceous dolomite	Noted for distinctive chert	
Cooley and Mud Creek	Chickamauga Limestone	Ordovician	Argillaceous, locally fossiliferous limestone		
	Red Mountain	Silurian	Sandstone, siltstone & shale; fossiliferous partly silty/sandy	Source of Iron ore for the Steel	
	Tuscumbia Limestone	Mississippian	Light-gray partly oolitic limestone; very coarse bioclastic crinoidal limestone common; light-gray chert nodules and concretions locally abundant		
	Fort Payne Chert	Mississippian	Bioclastic limestone with nodules, lenses and beds of light to dark-grey chert.	Highly fossiliferous with large crinoid stems	

Table 3.4 Geologic Formations of the Shades Creek Watershed

3.5.3 Soils

Soil series and soil types are established by the U.S. Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS). Soil series are a level of classification that groups soil types based on similar chemical and physical characteristics. Common soils groupings within the Shades Creek Watershed include: Fullerton-Bodine-Birmingham, Leesburg-Gorgas-Allen, Minvale-Fullerton-Bodine, Nella-Minvale-Fullerton-Dewey-Allen, Smithdale-Maubila-Luverne, Sullivan-State-Ketona-Decatur-Bodine, Townley-Nauvoo-Montevallo, Townley-Nauvoo-Montevallo-Albertville, Urban Land-Nauvoo-Gorgas-Allen, Urban Land-Tupelo-Decatur. The various soil groupings within Shades Creek Watershed can be found below in **Figure 3.6**.

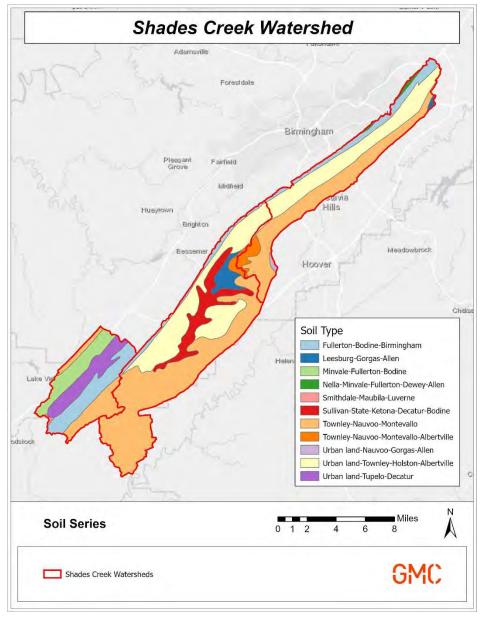


Figure 3.6: Soil Types

The natural drainage class of a soil refers to the frequency and duration of wet periods in natural conditions similar to the conditions when the soil formed (not altered by human activity). The USDA recognizes the following seven classes of natural soil drainage:

- 1. Excessively drained: Water is removed quickly
- 2. Somewhat excessively drained
- 3. Well drained
- 4. Moderately well drained
- 5. Somewhat poorly drained
- 6. Poorly drained
- 7. Very poorly drained

The USDA defines the classes of natural soil drainage as summarized below.

Excessively drained. Water is removed very rapidly. The occurrence of internal free water commonly is very rare or very deep. The soils are commonly coarse-textured and have very high hydraulic conductivity or are very shallow.

Somewhat excessively drained. Water is removed from the soil rapidly. Internal free water occurrence commonly is very rare or very deep. The soils are commonly coarse-textured and have high saturated hydraulic conductivity or are very shallow.

Well drained. Water is removed from the soil readily but not rapidly. Internal free water occurrence commonly is deep or very deep; annual duration is not specified. Water is available to plants throughout most of the growing season in humid regions. Wetness does not inhibit growth of roots for significant periods during most growing seasons. The soils are mainly free of the deep to redoximorphic features that are related to wetness.

Moderately well drained. Water is removed from the soil somewhat slowly during some periods of the year. Internal free water occurrence commonly is moderately deep and transitory through permanent. The soils are wet for only a short time within the rooting depth during the growing season, but long enough that most mesophytic crops are affected. They commonly have a moderately low or lower saturated hydraulic conductivity in a layer within the upper 1 m, periodically receive high rainfall, or both.

Somewhat poorly drained. Water is removed slowly so that the soil is wet at a shallow depth for significant periods during the growing season. The occurrence of internal free water commonly is shallow to moderately deep and transitory to permanent. Wetness markedly restricts the growth of mesophytic crops, unless artificial drainage is provided. The soils commonly have one or more of the following characteristics: low or very low saturated hydraulic conductivity, a high water table, additional water from seepage, or nearly continuous rainfall.

Poorly drained. Water is removed so slowly that the soil is wet at shallow depths periodically during the growing season or remains wet for long periods. The occurrence of internal free water is shallow or very shallow and common or persistent. Free water is commonly at or near the surface long enough during the growing season so that most mesophytic crops cannot be grown, unless the soil is artificially drained. The soil, however, is not continuously wet directly below plow-depth. Free water at shallow depth is usually present. This water table is commonly the result of low or very low saturated hydraulic conductivity of nearly continuous rainfall, or of a combination of these.

Very poorly drained. Water is removed from the soil so slowly that free water remains at or very near the ground surface during much of the growing season. The occurrence of internal free water is very shallow and persistent or permanent. Unless the soil is artificially drained, most mesophytic crops cannot be grown. The soils are commonly level or depressed and frequently ponded. If rainfall is high or nearly continuous, slope gradients may be greater.

Source: Soils Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture, Web Soil Survey. Available online at http://websoilsurvey.nrcs.usda.gov/. Accessed April 24, 2020

Drainage classes within the SCW are summarized in Table 3.5 below and are shown in the map in Figure 3.7.

Table 3.5 Drainage Classes						
Drainage Class	Cooley-Mud Creek (Acres)	% of Watershed	Lower Shades Creek (Acres)	% of Watershed	Upper Shades Creek (Acres)	% of Watershed
Not Classified	369.75	2%	872.61	2%	3,472.20	13%
Moderately well drained	261.07	1%	347.00	1%	-	0%
Poorly drained	3,362.61	19%	2,806.09	6%	731.21	3%
Somewhat excessively drained	3,919.45	22%	1,975.31	4%	2,445.13	9%
Somewhat poorly drained	25.72	0%	2,096.92	5%	-	0%
Well drained	9,967.15	56%	36,368.63	82%	19,747.31	75%
TOTAL	17,905.75		44,466.57		26,395.85	

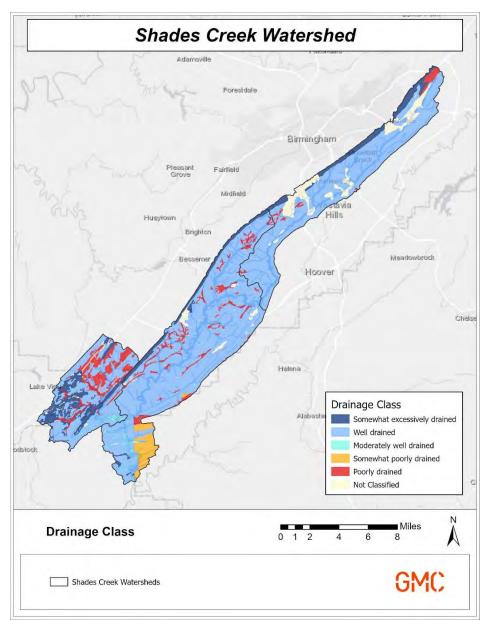


Figure 3.7: Soil Characteristics (NRCS, 2019)

3.5.4 Topography

The Cooley Creek-Mud Creek Watershed begins in Jones Valley at approximately 600 feet and winds through Red Mountain. Rock Mountain forms the border from the southwest to northeast of the Watershed at about 800 feet. After meandering through Red Mountain and Tannehill State Park, Mud Creek converges with Shades Creek at an elevation of 400 feet. Total relief of the stream path is about 200 feet.

The Lower SCW has a highpoint of approximately 700 feet along a ridge in the foothills of Red Mountain before running into Shades Valley at 600 feet. A gradual 100 feet of relief takes Little Shades Creek to meet Shades Creek and cuts through Shades Mountain. Shades Creek eventually encounters the Cahaba River at 300 feet elevation. The 400-foot topographic relief is more gradual in this drainage basin and it contains the longest waterway mileage.

The topography within the Upper SCW is more subdued than either of the other watersheds with the highest elevation approximately 800 feet. Shades Creek in this watershed hugs the foothills of Shades Mountain through a majority urbanized area. At the lowest it is about 540 feet where Shades Creek crosses into Lower SCW.

Topographic maps of each watershed are shown in the map in Figure 3.8.

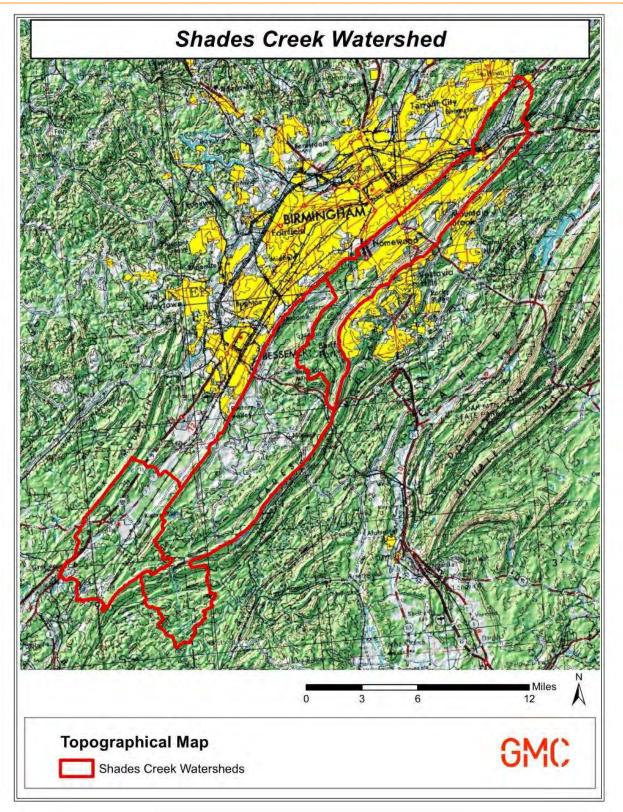


Figure 3.8: Topographic Map

3.6 HYDROLOGY

3.6.1 Rainfall and Climate

Located close to Birmingham, Alabama, Shades Creek Watershed experiences hot summers and mild winters with abundant rainfall. Rainfall and climate data are available from the database for the Weather Forecast Office (WFO) located at the Birmingham International Airport (KBHM). Precipitation is well distributed throughout the year, but most of the rain occurs in the winter months into July. Summertime rain occurs during afternoon thunderstorms, with March and April having the greatest risk of severe weather (Birmingham Area Climatology). Annual rainfall totals for the last five years (2014-2019) are shown in **Table 3.6**.

Average annual precipitation in Birmingham is 53.71 inches. Average monthly precipitation ranges from 3.43 inches in October to 5.24 inches in March. Rainfall is only slightly seasonally distributed. August through October are the only months when rainfall averages less than four inches. The only month that averages greater than five inches of rainfall is March, with May close at 4.99. Monthly maximum average temperatures range from 90.8 degrees F in July to 53.8 degrees F in January. Monthly minimum average temperatures range from 71.4 degrees F in July to 33.8 degrees F in January. The lowest temperature on record, -6 degrees F, occurred on January 21, 1985. The highest temperature, 107 degrees F, was recorded on July 29, 1930.

Monthly Precipitation													
					Pre	cipitatio	on in inc	hes					
Year	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	TOTAL
2014	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	3.66	4.46	7.15	N/A
2015	4.38	4.32	4.23	10.24	2.56	1.7	7.41	7.23	1.39	2.39	4.54	10.53	60.92
2016	3.28	7.46	5.7	3.75	1.42	3.96	7.08	2.52	0.68	0	2.07	2.39	40.31
2017	6.71	2.95	5.24	6.09	6.67	10.8	9.49	7.61	2.48	5.55	1.44	4.01	69.04
2018	1.35	8.14	4.13	8.25	6.98	5.77	1.81	2.32	4.32	1.04	5.64	11.34	61.09
2019	6.02	6.6	2.85	4.37	4.35	4.75	2.75	4.81	0.56	3.87	N/A	N/A	N/A
Mean	4.35	5.89	4.43	6.54	4.40	5.40	5.71	4.90	1.89	2.75	3.63	7.08	57.84

Table 3.6: Monthly precipitation data from the Birmingham International Airport (from NOAA/NWS, 2014-2019)

3.6.2 Groundwater Resources

Shades Creek Watershed lies within the Valley and Ridge aquifer system and contains rocks from the early to late Paleozoic era. They consist of carbonates such as limestone or dolomite and are productive groundwater sources, sometimes yielding 10 to 50 gallons per minute. Wells in these aquifers frequently produce 20 to 30 gallons per minute, and up to 100 gallons a minute in some areas. Carbonate rocks are

easily dissolved by groundwater infiltration, therefore forming underground connections between the different systems. There are some sandstone formations in this region that provide smaller amounts of groundwater, around 10 gallons per minute. Some other local formations of chert and quartz that experience fracturing can be productive aquifers as well.

Rocks in this region are eroded with ease and recharge surface water. Most of the recharge occurs when rain falls on outcrops and flows through fractures of sandstone and conglomerates, and eventually meets other groundwater within limestone formations. There is some concern over quality of groundwater in this region, such as increased concentrations of iron and sulfate (USGS, 1990).

3.6.3 FEMA Flood Zones

FEMA flood zone designations within the Shades Creek Watershed are identified in **Figures 3.9, 3.10**, and **3.11**. The flood hazard areas shown are designated by the Federal Emergency Management Agency (FEMA) and include: Zone A (subject to inundation by the 1% annual-chance flood event with no base flood elevation (BFE) determined), Zone AE (subject to inundation by the 1% annual-chance flood event with BFE determined), Zone AE Floodway (channel of river or other watercourse and adjacent land that discharge base flood), and Zone X (minimal risk areas outside the 1% and 0.2% annual-chance floodplains). Zone X includes the "shaded" Zone X (100-yr to 500yr flood zone) and the "non-shaded" zone (>500-yr floodzone) (FEMA, 2018). The flood designations within the SCW include Zone A, Zone AE, Zone AE Floodway, and Zone X. The percentages of each flood zone within the SCW sub basins are summarized in the table below.

Flood Zone	Cooley Creek-Mud Creek	Lower Shades Creek	Upper Shades Creek
A	5.04%	2.62%	0.30%
AE	0.27%	4.09%	2.81%
AE, Floodway	0.20%	4.62%	0.92%
Shaded Zone X (100-500 yr.)	0.03%	0.63%	0.80%
Non-Shaded Zone X (>500yr)	94.46%	88.04%	95.17%

Table 3.7 Flood Zones

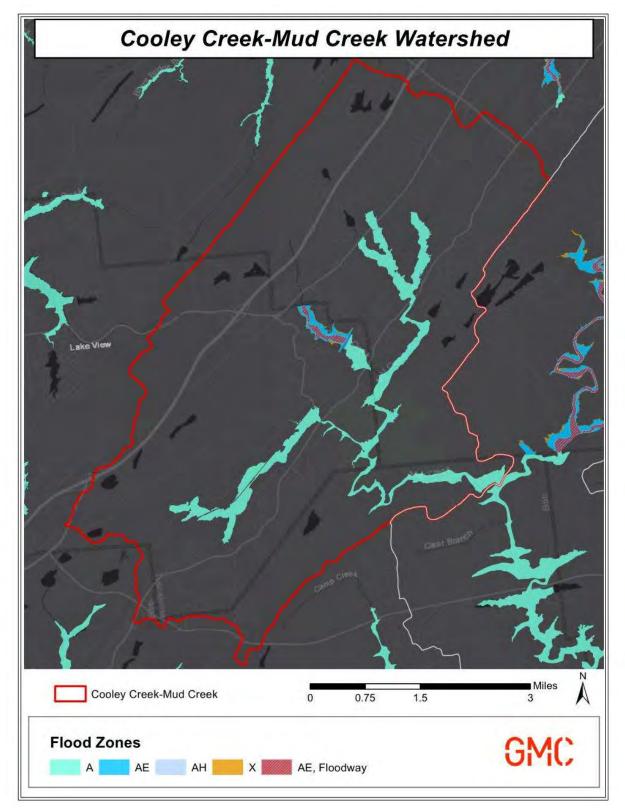


Figure 3.9: FEMA Flood Zones in Cooley Creek-Mud Creek

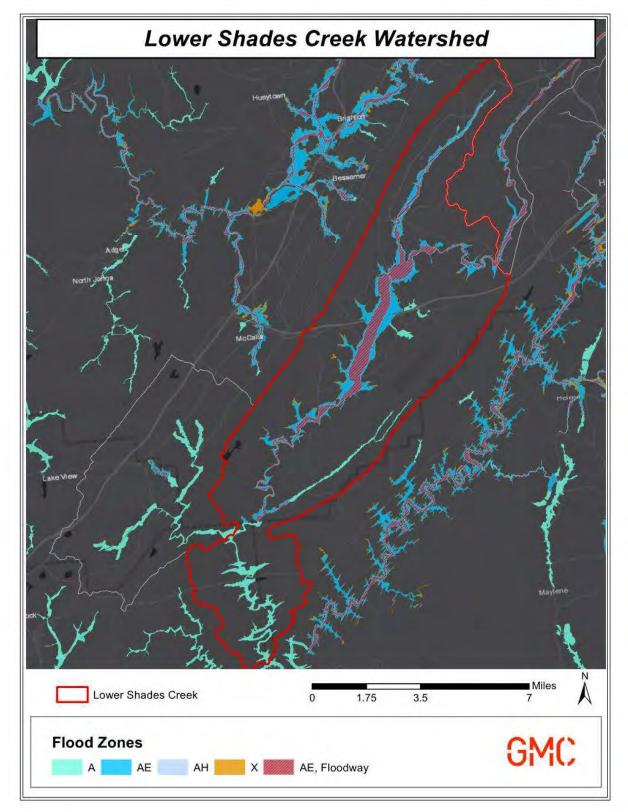


Figure 3.10: FEMA Flood Zones in Lower Shades Creek

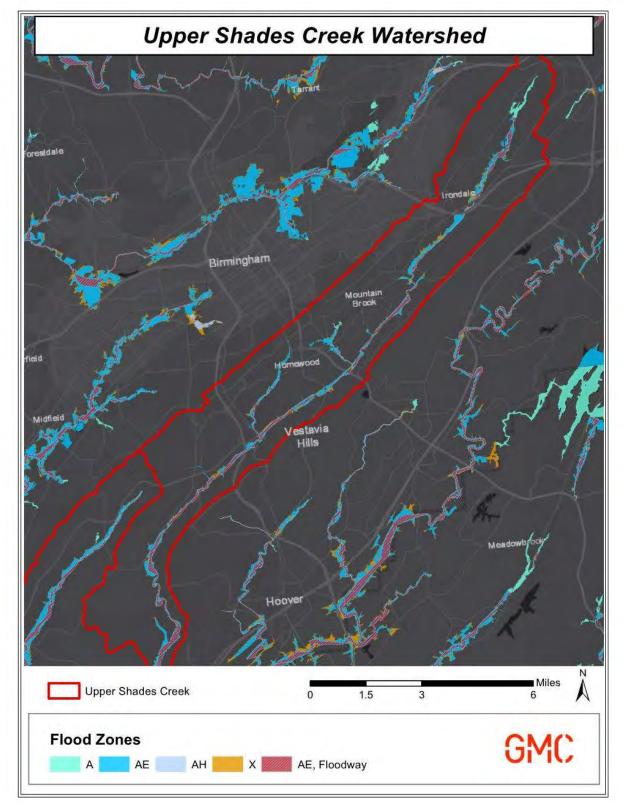


Figure 3.11: FEMA Flood Zones in Upper Shades Creek

3.6.4 Wetlands

A wetland in general is defined as a substrate that is approat the minimum periodically saturated by water. The water creates an environment for specific types of plants and animals. Properly saturated soils that are characteristic of a wetland are generally mineral material, organic material, or rock. National Wetland Inventory (NWI) data were used to classify the wetlands within the Shades Creek Watershed (USFWS, 2017). The SCW contains 4,977.63 acres of wetlands or 5.61% of the watershed's area (**Figures 3.12** – **3.14**). The percentage of wetlands within each sub-watershed is as follows: Cooley Creek-Mud Creek (10.29%), Lower Shades Creek (6.41%), and Upper Shades Creek (1.07%).

The overall health of the Shades Creek Watershed depends upon the existence of its wetlands, which contribute to the vitality of an ecosystem by storing, changing, and transmitting surface water and groundwater. Through these processes, pollution is removed, nutrients are recycled, groundwater is recharged, and biodiversity is enhanced. Wetlands are incredibly diverse and are some of the most productive ecosystems in the world. Wetland composition varies extensively, with five distinct categories for classification: Estuarine, Lacustrine, Marine, Palustrine, and Riverine systems (FGDC, 2013). Wetlands within the Shades Creek Watershed include: Palustrine (Freshwater Emergent, Freshwater Forested/Shrub, Freshwater Pond, and Lake) and Riverine. **Table 3.8** illustrates the percentage of each wetland type within each sub-watershed.

Wetland Type	Cooley Creek-Mud Creek (Acres)	Cooley Creek- Mud Creek (%)	Lower Shades Creek (Acres)	Lower Shades Creek (%)	Upper Shades Creek (Acres)	Upper Shades Creek (%)
Freshwater Emergent Wetland	137.52	0.77%	182.65	0.41%	10.21	0.04%
Freshwater Forested/ Shrub Wetland	1,342.29	7.50%	2,006.21	4.51%	99.01	0.38%
Freshwater Pond	257.73	1.44%	285.42	0.64%	15.70	0.06%
Lake	22.45	0.13%	65.33	0.15%		
Riverine	82.78	0.46%	312.52	0.70%	157.82	0.60%
TOTAL	1,842.77		2,852.13		282.74	

 Table 3.8 Wetland Type (USFWS National Wetland Inventory Map)

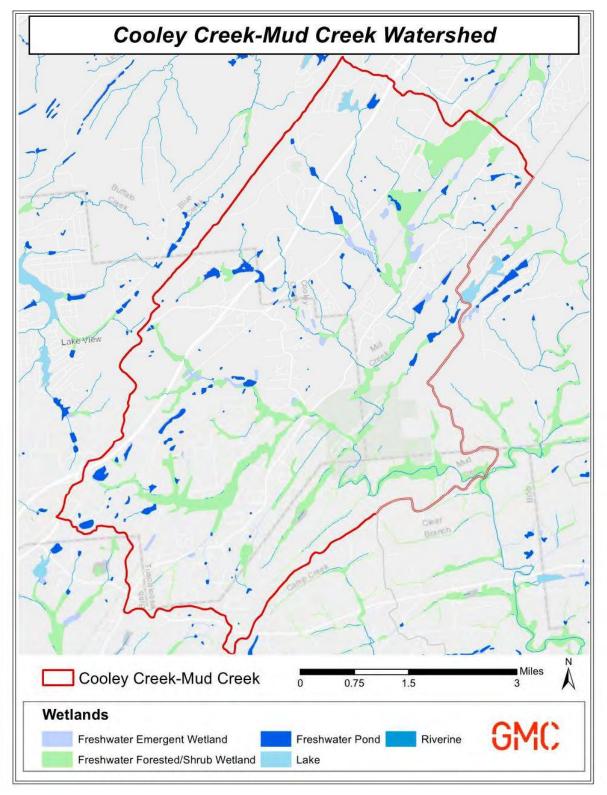


Figure 3.12: Wetland Types in Cooley Creek-Mud Creek

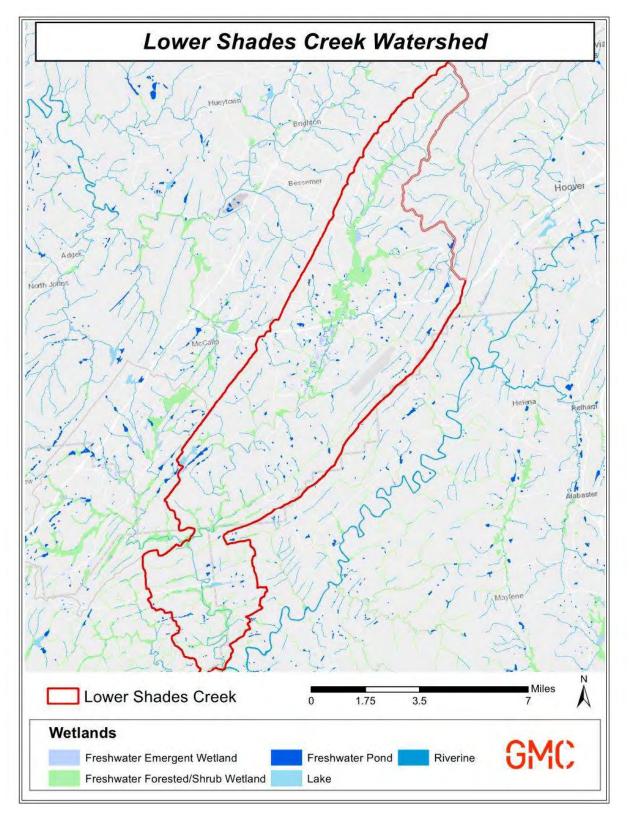


Figure 3.13: Wetland Types in Lower Shades Creek

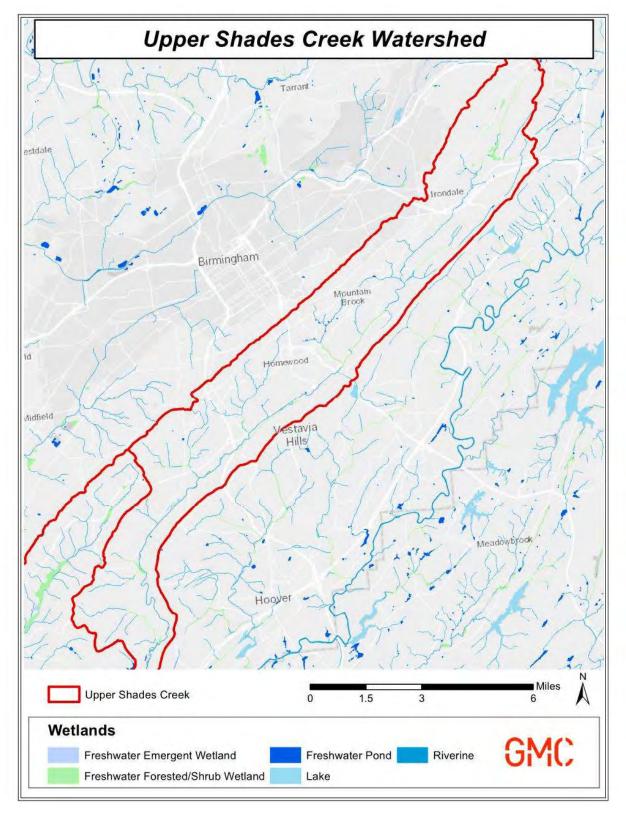


Figure 3.14: Wetland Types in Upper Shades Creek

The Palustrine System

The Palustrine (freshwater) System as shown in **Figure 3.15** includes all non-tidal wetlands dominated by trees, shrubs, persistent emergent plants, and all such wetlands that occur in areas where salinity from ocean-derived salts is below 0.5-ppt. The Palustrine System can be bounded by one other wetland System or an upland area. This System contains various vegetated wetlands and periodic or permanent water bodies.

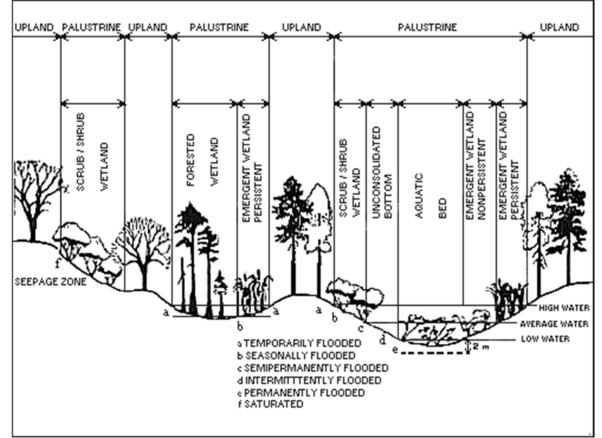


Figure 3.15: The Palustrine wetland system (from FDGC, 2013)

The Riverine System

The Riverine system, shown in **Figure 3.16**, is defined by all wetlands and deep-water habitats that exist within a channel with two exceptions: (1) wetlands dominated by trees, shrubs, emergent vegetation, emergent mosses, or lichens, and (2) habitats with water containing ocean-derived salts in excess of 0.5 ppt. Water can either be occasionally flowing or always flowing through the stream bed.

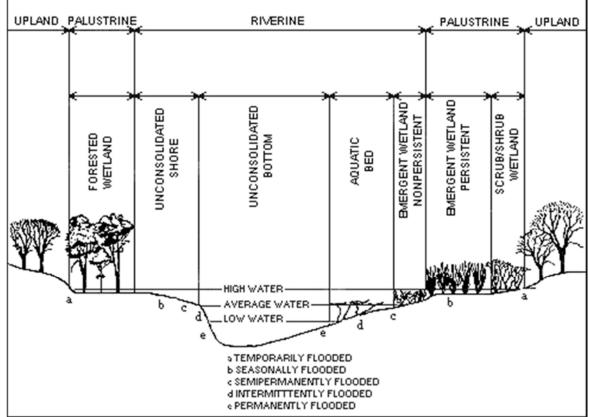


Figure 3.16: The Riverine wetland system (from FDGC, 2013)

3.7 BIOLOGICAL RESOURCES

Shades Creek Watershed is within a very unique ecoregion and has a diversity of plants and animals. The variety of creeks, lakes, and forests provide ample habitat for species.

3.7.1 Flora and Fauna

Jefferson County's environmental inventory includes oak-hickory and oak-pine forests, pastures, and agriculture. Flora data specific to the Shades Creek Watershed was sourced from the Alabama Department of Conservation and Natural Resources which gathers records from a variety of sources (ALDCNR, 2019). There is species occurrence data for 23 amphibians, 188 birds, 15 crustaceans, 61 fish, 69 insects, 13 mammals, 30 mollusks, 18 reptiles, 7 spiders, and 241 vascular plants (ADCNR 2019).

3.7.2 Protected Species

Alabama has the third highest number of endangered or threatened species in the country, with 131 (Al.com, 2019). The unique physical geography of the Appalachian Mountains allows for small ecosystems of distinct species to develop. The U.S. Fish and Wildlife Service (USFWS) has a designation that classified 26 species as federally threatened or endangered in 2019 that may occur in Shades Creek Watershed. This includes 3 mammals, 1 reptile, 1 amphibian, 4 fishes, 9 clams, 3 snails, 5 flowering plants. Some species had a specific "final critical habitat" and the SCW was out of that defined area; however, the species are still known to occur in the Watershed. **Table 3.9** provides a list of these protected species.

Group	Common Name	Scientific Name	Status
Mammals	Gray Bat	Myotis grisescens	Endangered
Mammals	Indiana Bat*	Myotis sodalis	Endangered
Mammals	Northern Long-eared Bat	Myotis septentrionalis	Threatened
Amphibians	Black Warrior Waterdog*	Necturus alabamensis	Endangered
Fishes	Cahaba Shiner	Notropis cahabae	Endangered
Fishes	Rush Darter*	Etheostoma phytophilum	Endangered
Fishes	Watercress Darter	Etheostoma nuchale	Endangered
Fishes	Goldline Darter	Percina aurolineata	Threatened
Freshwater Mussels	Ovate Clubshell*	Pleurobema perovatum	Endangered
Freshwater Mussels	Southern Acornshell*	Epioblasma othcaloogensis	Endangered
Freshwater Mussels	Southern Clubshell*	Pleurobema decisum	Endangered
Freshwater Mussels	Southern Pigtoe*	Pleurobema georgianum	Endangered
Freshwater Mussels	Triangular Kidneyshell*	Ptychobranchus greenii	Endangered
Freshwater Mussels	Upland Combshell*	Epioblasma metastriata	Endangered
Clams	Alabama Moccasinshell*	Medionidus acutissimus	Threatened
Clams	Finelined Pocketbook*	Lampsilis altilis	Threatened
Clams	Orangenacre Mucket*	Lampsilis perovalis	Threatened
Snails	Cylindrical Lioplax	Lioplax cyclostomaformis	Endangered
Snails	Flat Pebblesnail	Lepyrium showalteri	Endangered
Snails	Round Rocksnail	Leptoxis ampla	Threatened
Flowering Plants	Gentian Pinkroot	Spigelia gentianoides	Endangered
Flowering Plants	Tennessee Yellow-eyed Grass	Xyris tennesseensis	Endangered
Flowering Plants	Georgia Rockcress	Arabis georgiana	Threatened
Flowering Plants	Mohr's Barbara's Buttons	Marshallia mohrii	Threatened
Flowering Plants	White Fringeless Orchid	Platanthera integrilabia	Threatened
Reptiles	Flattened Musk Turtle	Sternotherus depressus	Threatened

Table 3.9: Federally threatened or endangered species that may occur in SCW (from USFWS, 2019)

* denotes species whose critical habitat is outside SCW

Jefferson County provides habitat for approximately 49 rare, threatened, and endangered species (ANHP, 2019). The Alabama Natural Heritage Program (ANHP) maintains a tracking list of animal species that are protected by the State of Alabama as well as additional species that are of conservation concern. Rankings are referenced from the Heritage ranking system developed by NatureServe as follows: S1: Critically

Imperiled, S2: Imperiled and S3: Vulnerable. The ANHP's tracking list of these species within Jefferson County are listed in **Table 3.10**.

Group	Common Name	Scientific Name	State Ran
Amphibians	Webster's Salamander	Plethodon websteri	S3
Caddisflies	Caddisfly	Cheumatopsyche cahaba	S1
Caddisflies	A Caddisfly	Hydropsyche hageni	S2
Crayfishes	Painted Devil Crayfish	Cambarus Iudovicianus	S2
Dragonflies and Damselflies	Springwater Dancer	Argia plana	S1
Ferns and relatives	Field Horsetail	Equisetum arvense	S2
Flowering Plants	Cypress-knee Sedge	Carex decomposita	S1
Flowering Plants	Leafy Prairie Clover	Dalea foliosa	S1
Flowering Plants	Ozark Savory	Clinopodium glabellum	S1
Flowering Plants	Pasture Glade-cress	Leavenworthia exigua var. lutea	S1
Flowering Plants	Yellowleaf Tinker's	Triosteum angustifolium	S1
Flowering Plants	Alabama Larkspur	Delphinium alabamicum	S2
Flowering Plants	Alabama Skullcap	Scutellaria alabamensis	S2
Flowering Plants	Alabama Snow-wreath	Neviusia alabamensis	S2
Flowering Plants	Basil Bee-balm	Monarda clinopodia	S2
Flowering Plants	Carolina Gentian	Frasera caroliniensis	S2
Flowering Plants	Eared Coneflower	Rudbeckia auriculata	S2
Flowering Plants	Georgia Oak	Quercus georgiana	S2
Flowering Plants	Harper's Dodder	Cuscuta harperi	S2
Flowering Plants	Shoals Spider-lily	Hymenocallis coronaria	S2
Flowering Plants	Menge's Fame-flower	Phemeranthus mengesii	S3
Flowering Plants	Nevius' Stonecrop	Sedum nevii	53
Flowering Plants	Nuttall's Rayless Goldenrod	Bigelowia nuttallii	S3
Flowering Plants	Southern Twayblade	Listera australis	53
Flowering Plants	Wahoo	Euonymus atropurpureus	53
Flowering Plants	Yellowwood	Cladrastis kentukea	53
Flowering Plants	Decumbent Trillium	Trillium decumbens	53
Freshwater Fishes	Blue Shiner	Cyprinella caerulea	
Freshwater Fishes	Rush Darter	Etheostoma phytophilum	S1
Freshwater Fishes	Vermilion Darter	Etheostoma chermocki	S1
Freshwater Fishes	Watercress Darter	Etheostoma nuchale	S1
Freshwater Fishes	Cahaba Shiner	Notropis cahabae	S2
Freshwater Fishes	Coal Darter	Percina brevicauda	S2
Freshwater Fishes	Tuskaloosa Darter	Etheostoma douglasi	52 S3
Freshwater Mussels	Rayed Kidneyshell	Ptychobranchus foremanianus	S1
Freshwater Mussels	Southern Clubshell	Pleurobema decisum	S2
Freshwater Mussels	Finelined Pocketbook	Hamiota altilis	S2
Freshwater Mussels	Delicate Spike	Elliptio arctata	S2
Freshwater Mussels	Black Sandshell	Ligumia recta	S2
Freshwater Mussels	Alabama Heelsplitter	Lasmigona alabamensis	S3
Freshwater Mussels	Ridged Mapleleaf	Quadrula rumphiana	S3
Freshwater Snails	Riffle Elimia	Elimia clara	S3
Mammals	Eastern Spotted Skunk	Spilogale putorius	S2S3
Natural Community	Swamp Blackgum	Nyssa biflora / Itea virginica	S1
Natural Community	Sandstone Glade	Bigelowia nuttallii	S2
Reptiles	Northern Pinesnake	Pituophis melanoleucus	S3
Spiders and other Chelicerates	Pseudoscorpion	Aphrastochthonius pecki	S1
Spiders and other Chelicerates	A Cave Spider	Appaleptoneta jonesi	S1
		Sternotherus depressus	

Table 3.10 Animal Species of Conservation Concern in Jefferson County (Alabama Natural Heritage Program)

3.7.3 Invasive Species

Invasive species are plants or animals that have been introduced to an area outside of their original range. Typically, these species spread incredibly fast due to their quick reproduction rates and ability to outcompete native species for resources. In many cases, the ecological integrity and biodiversity of an area is threatened when homogenous stands of invasive species are established. Managing invasive species can be a significant cost to forestry, fisheries, and agricultural industries. According to the University of Georgia Center for Invasive Species and Ecosystem Health (CISEH) (CISEH, 2016), with 194 species, Jefferson County has reported the 10th most invasive species out of any county in Alabama. The following invasive species exist throughout the state of Alabama: Kudzu Bug, Fire Ants, Southern Pine Beetle; Eastern Poison-Ivy, Eastern Redcedar, Japanese Honeysuckle, Kudzu, Mimosa, Chinese Privet; and Wild Pig.

3.8 DEMOGRAPHIC AND SOCIOECONOMIC ENVIRONMENT

Jefferson County had a population growth rate of -0.54% between 2000 and 2010. This declining population growth rate comes after an increase from 1990 to 2000. Between 1990 and 2000, there was a population increase of 1.6%, (USCB, 2001). From 2010 to 2040, the Center for Business and Economic Research (CBER) at the University of Alabama predicts a total growth rate of 1.4% (CBER, 2018). The 1.4% growth rate is an average that takes into account both areas that are losing and those that are gaining population.

Population and percent change for Jefferson County is summarized in **Table 3.11**. CBER has data estimates on the majority of cities in Alabama which includes those in the Birmingham area. Estimates were made in 2015 that project populations up to 2019 and the percent change compared to the 2010 census (CBER, Quick Facts). This data is detailed in **Table 3.12**. There is a trend of people moving from Birmingham to suburban areas, as shown in the percent growth. The City of Birmingham, Mountain Brook, and Bessemer are decreasing while Homewood, Vestavia Hills, Hoover, and Irondale are increasing. Homewood and Irondale are both located in Upper Shades Creek Watershed.

Jefferson County							
Year	1990	2000	2010	Projected 2040			
Population	651,525	662,047	658,466	667,433			
Percent Change		1.6	-0.54	1.4			

Table 3.11: Population for Jefferson County (1990-2040) and (CBER, 2018), (USCB, 2001)

Cities in SCW									
Year	Year 2010 2019 (est.) % change								
Bessemer	27,667	26,472	-4.3						
Birmingham	212,585	209,403	-1.5						
Homewood	25,143	25,377	0.9						
Hoover	80,823	85,768	6.1						
Irondale	12,415	12,893	3.9						
Mountain Brook	20,467	20,297	-0.8						
Vestavia Hills	33,766	34,413	1.9						

Table 3.12 Population stats for cities partially or wholly within SCW (2010-2019) (CBER, 2015)

The U.S. Census captures data every ten years, and this information is available for a variety of geographic units including counties, cities, tracts, and census blocks. Five-year estimates are also calculated by the Census American Community Survey program for differing geographic units --many at the tract level. Census tracts are defined by the U.S. Census Bureau as "small, relatively permanent statistical subdivisions of a county or equivalent entity that are updated by local participants prior to each decennial census as part of the Census Bureau's Participant Statistical Areas Program" (Census, 2016). The population for the Shades Creek Watershed are illustrated in **Figure 3.17**.

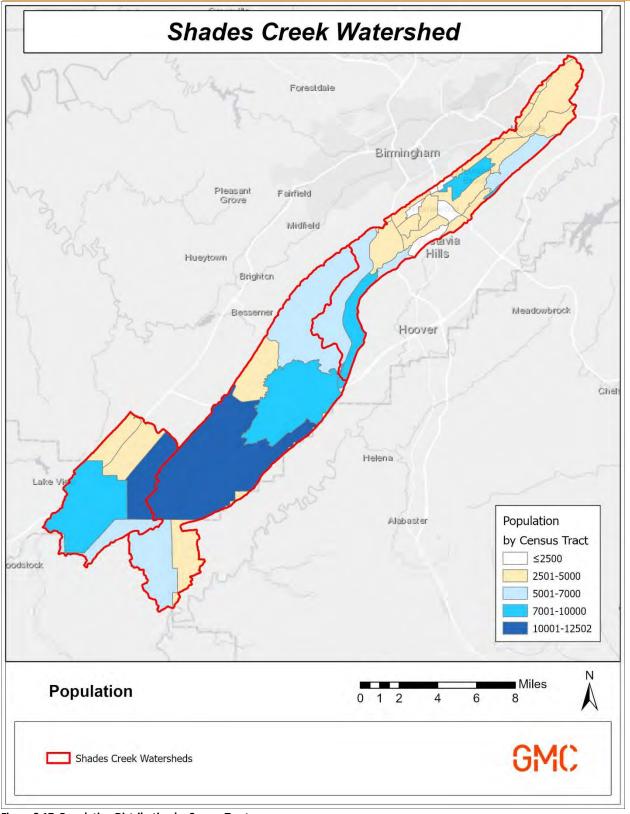


Figure 3.17: Population Distribution by Census Tract

Socioeconomic statistics from 2015 were also acquired from the Census American Community Survey program. The maps that follow illustrate the distribution of median household income on **Figure 3.18** and percent in poverty on **Figure 3.19**.

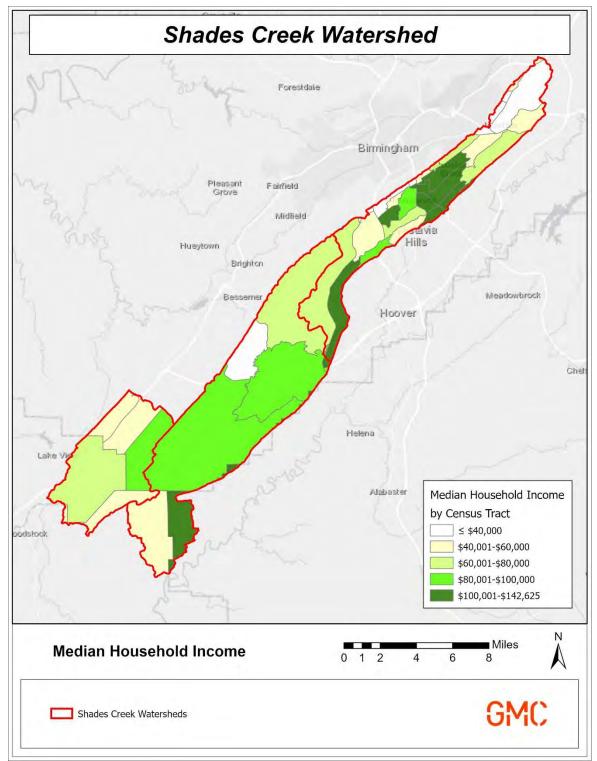


Figure 3.18: Median Household Income

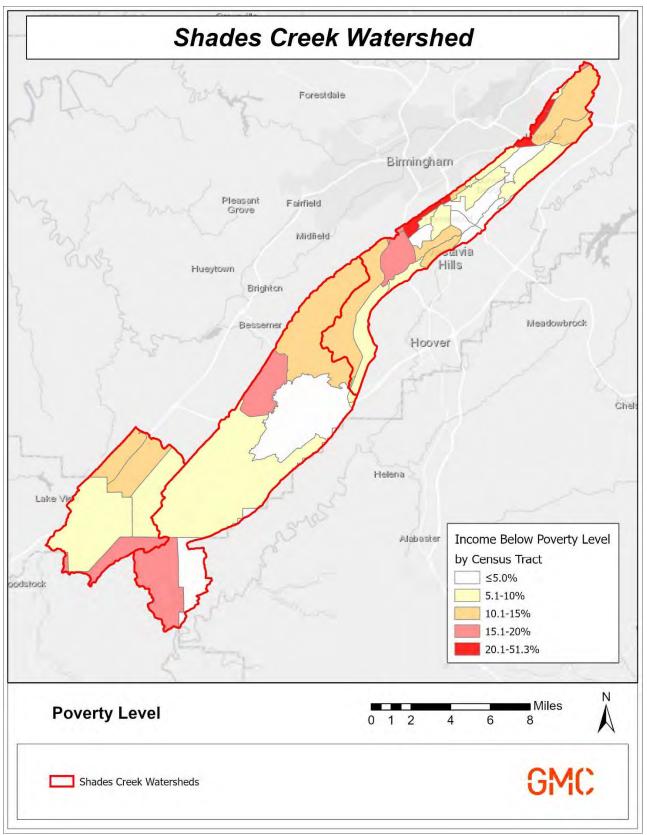


Figure 3.19: Percent in Poverty

4.1 WATER QUALITY OVERVIEW AND PROCESS

The status and trends of the ambient surface water quality of Shades Creek and its tributaries were assessed through the compilation and analysis of available data. Ambient surface water quality has generally been well studied over the past several decades, and sufficient recent and historic data exist to adequately analyze water quality conditions.

4.1.1 Previous Studies and Existing Data

The data sources reviewed and analyzed to characterize ambient surface water quality in this Shades Creek Watershed Management Plan (WMP) included the following:

- Alabama Department of Environmental Management (ADEM) (ADEM, 2017a) routine programmatic ambient monitoring
- Jefferson County Health Department (JCHD) (JCHD, 2019)

The available numeric data analyzed were obtqined from these sources. **Table 4.1** summarizes the number of stations, sampling period, and general parameters included in these datasets.

Source	No.	Sampling Period		General Parametric Coverage
	Stations	First	Last	
ADEM	24	07/11/1990	05/01/2019	temperature, DO, pH, specific conductance, turbidity, TSS, TDS, nutrients, bacteria, metals, organics, other
JCHD	12	03/17/2010	05/30/2019	temperature, DO, pH, specific conductance, turbidity, TSS, TDS, nutrients, bacteria, metals, organics, other

Table 4.1: Summary of primary ambient surface water quality data source (ADEM, 2017a; JCHD, 2019)

It should be noted that the temporal, spatial, and parametric coverage of ADEM monitoring program varies substantially over the period of record, since some stations were only monitored for certain dates or for certain parameters. There are relatively few stations in the Shades Creek Watershed where consistent data have been collected over a long period. Therefore, the characterization of the status and trends in surface water quality presented relies on analyzing what data is provided. Appendix D includes time series plots of data for key parameters at all stations.

4.1.2 Water Quality Standards

Designated and Desired Uses

Code of Alabama Section 335-6-10-.03 establishes the designated use classification system for Alabama surface waters. There are seven basic classifications including:

- 1. Outstanding Alabama Water
- 2. Public Water Supply
- 3. Swimming and Other Whole Body Water-Contact Sports

- 4. Shellfish Harvesting
- 5. Fish and Wildlife
- 6. Limited Warmwater Fishery
- 7. Agricultural and Industrial Water Supply

In addition to these classifications, there are two additional special designations: Outstanding National Resource Waters and Treasured Alabama Lakes. Designated use classifications essentially define the existing and/or intended use of a particular water body. Code of Alabama Section 335-6-10-.09 defines the water quality criteria that corresponds with specific designated uses (ADEM, 2017b). These criteria establish water quality standards and other measures developed to protect designated uses of each waterbody.

All surface waters in the Shades Creek Watershed have a default water use designation of Fish and Wildlife (F&W), Swimming and Other Whole Body Water-Contact Sports (S&WC), and Agricultural and Industrial Water Supply (A&I). **Table 4.2** lists the specific water quality criteria for water use classifications within the Shades Creek Watershed. A&I standards are not mentioned in the *E.coli* section due to the fact that F&W and S&WC standards are a lower threshold, therefore taking precedent. Dissolved oxygen (DO) standard for A&I also has a lower minimum level than other designated uses so it is not referenced in the DO section.

Swimming and Other Whole Body Contact Water Sports:						
<u>Criteria</u>	<u>Standard</u>					
рН	6.0 to 8.5 standard unit (s.u.)					
Water	< 90°F					
Dissolved Oxygen	> 4.0 mg/L					
E. coli	< 126 colonies/100mL (geometric mean) / < 235 colonies/100mL (single sample)					
Turbidity	< 50 nephelometric turbidity units (NTU) above background					
	Fish and Wildlife:					
<u>Criteria</u>	<u>Standard</u>					
рН	6.0 to 8.5 s.u.					
Water	< 90°F					
Dissolved Oxygen	> 4.0 mg/L					
E. coli	< 548 colonies/100mL (geometric mean) / < 2507 colonies/100mL (single sample)					
Fecal Coliform	< 1000 colonies/100mL (geometric mean) / < 2000 colonies/100mL (single sample)					
Bacteria*	/ < 200 colonies/100mL (geometric mean June –Sept.)					
Turbidity	< 50 NTU above background					
	Agricultural and Industrial Water Supply:					
<u>Criteria</u>	<u>Standard</u>					
рН	6.0 to 8.5 s.u.					
Water	90°F					
Dissolved Oxygen	> 3.0 mg/L					
E. coli	< 700 colonies/100mL (geometric mean) / < 3200 colonies/100mL (single sample)					
Turbidity	< 50 NTU above background					
	etendende Courses ADEM Admin Code D. 225 C 10, 00					

Table 4.2: ADEM water quality criteria for water use classifications

*Pre - 2014 criteria and standards - Source: ADEM Admin. Code R. 335-6-10-.09

Clean Water Act (CWA) Section 303(d) and Total Maximum Daily Loads (TMDLs)

Under Section 303(d) of the Federal Clean Water Act 9 (CWA), waterbodies that are determined to not meet water quality criteria for their respective designated uses are required to be listed as "impaired waters". Section 303(d) of the CWA requires states to submit a list of surface waters that do not meet applicable water quality standards (impaired waters) where implementation of technology-based effluent limitations alone did not ensure attainment of applicable water quality standards. The 303(d) list is submitted to the U.S. Environmental Protection Agency (EPA) for approval after an opportunity for public comment. The list includes the causes and sources of water quality impairment for each waterbody listed and a schedule for development of total maximum daily loads (TMDLs) for each pollutant-causing impairment identified (ADEM, 2017a).

TMDLs determine the amount of each pollutant causing water quality impairments that can be allowed without resulting in exceedances of prescribed water quality standards for the waterbody. A TMDL is the sum of the allowable loads of a single pollutant from every contributing point and nonpoint source, including a margin of safety to account for uncertainty. TMDLs also address reductions needed to meet water quality standards and allocates those reductions among the point and nonpoint sources in a watershed. Therefore, development of TMDLs is an important step in restoring surface waters to their designated uses.

The Shades Creek Watershed is composed of three separate 12-digit hydrologic unit codes (HUCs) and their associated named tributaries and/or canals. The three HUCs and their respective tributaries that comprise the Shades Creek Watershed include the following (EPA, 2017):

Upper Shades Creek (HUC 031502020301)

- Shades Creek
- Griffin Brook
- Watkins Brook
- Unnamed Drainages

Lower Shades Creek (HUC 031502020303)

- Black Creek
- Clear Branch
- Bob George Branch
- Rice Creek
- Allen Brook
- Rocky Brook
- Unnamed Drainages

Cooley Creek/Mud Creek (HUC 031502020302)

- Mud Creek
- Cooley Creek
- Mill Creek
- Unnamed Drainages

ADEM is responsible for the implementation of the Section 303(d) program in Alabama (ADEM, 2017a). To date, four waterbody identification units (WBIDs) in the Shades Creek Watershed have been identified as impaired for different parameter classes, and four have approved TMDLs. **Table 4.3** provides a status summary of the 303(d) listed WBIDs in the Shades Creek Watershed (EPA, 2003a; 2003b).

Water Body	Impairment	Regulatory Status
Cooley Creek	Pathogens (bacteria)	Approved TMDL (2003)
Mud Creek	Pathogens (bacteria)	Approved TMDL (2003)
Mill Creek	Pathogens (bacteria)	Approved TMDL (2003)
Shades Creek	Pathogens (bacteria); Siltation, Turbidity, and Habitat Alteration	Approved TMDL (2003)

Table 4.3: Relative water quality summary assessment of the Shades Creek Watersh	ned

ADEM is initially responsible for implementing waste load allocations (WLAs) for the municipal separate storm sewer system (MS4) area according to specific permit conditions. Responsibility for the incorporation of the approved WLAs within respective NPDES permits then falls on the MS4 permittees in watershed. Responsibility for the implementation of the MS4 requirements falls primarily on the owners of permits for the operation of MS4 permits. In this watershed that includes the counties (Jefferson, Shelby, Tuscaloosa) and municipalities (Bessemer, Birmingham, Homewood, Hoover, Irondale, Mountain Brook, and Vesatvia Hills) located within the watershed.

4.1.3 Stormwater Runoff

The surface water system within the Shades Creek Watershed has been affected by moderate urbanization and agricultural land. Upper Shades Creek and Lower Shades Creek Watersheds experience the most alterations of the watershed due to a greater area of urbanization. There is a more commercial and residential land use in that area, while Cooley-Mud Creek Watershed has some residential. Many have been channelized and concrete-lined, and those with natural channels often are eroded and carry heavy sediment loads. The area surrounding Birmingham has a hot, humid, subtropical climate with abundant rainfall. Average annual rainfall reaches about 50 to 55 inches depending on geographic region and average temperature ranges from 80 to 88 degrees Fahrenheit (°F) in the summer and 38 to 50°F in the winter. Precipitation typically comes in the form of thunderstorms and intense showers (NOAA). All of these conditions create the potential for stormwater runoff to be a major issue within the Shades Creek watershed.

Extensive impervious surfaces create flashy hydrographs with rapid rise and fall of surface water discharge and velocity due to runoff. As documented in Chapter 3, Shades Creek Watershed contains a large percentage of urban developed land use. General land use categories indicate that impervious surfaces are greatest in the Upper Shades Creek sub watershed with the least impervious surfaces in the Cooley-Mud Creek sub watershed. Due to the watershed crossing multiple jurisdictions with varying level of GIS data, impervious surface data is inconsistent. A detailed analysis of the impervious surface data would be beneficial to future watershed planning and identification of critical areas for storwater runoff BMP's.

Stormwater runoff is greatest in developed areas with impervious surfaces. Developed areas are primary sources of trash, nutrients, sediment, and introduced chemicals. Agricultural land contributes pathogens, nutrients, and other pollutants. Maps of land use and land cover (LULC) within the Shades Creek Watershed were created using the GIS database (**Chapter 3**). Urbanized lands with impervious surfaces are critical areas where control and mitigation of runoff should be addressed.

There are over 480 known stormwater outfalls in the Shades Creek Watershed. These outfalls convey stormwater runoff from streets and parking lots to surface water drainages. This runoff can carry petroleum-related substances, trash, metals, and other pollutants to the surface water drainages in the Shades Creek and eventually into the Cahaba River. Illicit discharges are defined as unpermitted and unregulated outflows that place pollutants into the surface water system. Illocit discharges are reported within each communities Municipal Storm Water Permit.

4.2 WATER QUALITY DATA

Characterization of a waterbody's existing water quality is divided into other general classes of water quality parameters including:

- 1. <u>Physiochemical parameters</u> measures of the general physical and chemical properties of a waterbody related to water column mixing, density stratification, and light transmittance in estuaries, including:
 - Temperature
 - Salinity
- 2. <u>Geochemical parameters</u> measures of geological inputs into a waterbody that affect water clarity and sedimentation, including:
 - Total suspended solids (TSS)
 - Total Dissolved Solids (TDS)
 - Turbidity
 - Specific conductance
 - pH

- 3. <u>Trophic parameters</u> measures of primary production (e.g., algal and macrophytic photosynthesis), related processes (e.g., respiration), and drivers (nutrients) in a waterbody, including:
 - Dissolved oxygen (DO)
 - Chlorophyll-a
 - Nitrogen both total and inorganic
 - Phosphorus both total and inorganic
- 4. <u>Pathogens</u> bacterial constituents that are used as indicators to detect and estimate the level of fecal contamination in water, including:
 - Fecal coliform
 - E. coli
- 5. <u>Contaminants</u> chemical constituents that are potentially toxic to aquatic organisms and humans, including:
 - Heavy metals
 - Organics

While there is some overlap in the classes of water quality parameters listed above, they are individual measures and/or indicators for different characteristics. The cumulative assessment of these parameters can be used to determine the overall water quality of a particular waterbody with regard to its designated uses.

4.2.1 ADEM Water Qulaity Monitoring Data

COOLEY CREEK-MUD CREEK ADEM WATER QUALITY DATA

The Cooley Creek-Mud Creek Watershed encompasses approximately 72.4 square km with approximately 240,267 feet (or 44.5 miles) of surface water drainages (USGS, 2017). From the western and northern boundaries of the Cooley Creek-Mud Creek Watershed to the confluence with Shades Creek, relief within the study area is approximately 230 feet. The majority of that relief occurs within Tannehill State Park around Red Mountain. Mud Creek runs until elevation of around 400 feet where it merges with Shades Creek (ESRI, 2019).

Water quality sampling stations in the Cooley Creek-Mud Creek Watershed are shown in **Figure 4.1**. In terms of spatial coverage, the Watershed has been consistently sampled by ADEM. The data encompass a period of record from 1996 to 2014.

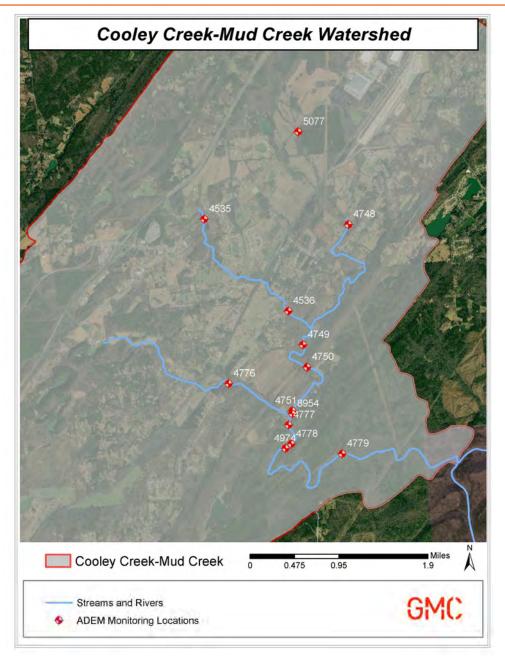


Figure 4.1: Water quality sampling stations in the Cooley Creek-Mud Creek Watershed

<u>Dissolved Oxygen</u> – Dissolved oxygen (DO) is necessary for the healthy respiration of all aquatic organisms. DO concentration in streams fluctuates naturally as a result of many factors including water temperature, sunlight intensity and duration, plant growth, and stream flow characteristics such as turbulent versus laminar flow. Unnatural causes such as nutrient runoff can decrease DO concentrations due to algal growth. DO concentrations below regulatory criteria (5mg/L) are considered to be stressful to fish, shellfish and other benthic invertebrates (MPCA, 2019).

Figure 4.2 shows a time series plot of DO data from each creek within the Watershed; Cooley, Mud, and Mill Creek. Minimum DO criteria for freshwater designation is 5mg/L (ADEM, 2017b). This plot shows that dissolved oxygen concentrations have not violated the regulatory criteria, and that the concentration appears to have increased since 1996. These monitoring stations were the only three found within the Cooley Creek-Mud Creek Watershed that had data from both 1996 and 2014. It can be assumed that these provide greater data representation over time.

Station 4751, located on Mill Creek immediately before is converges with Mud Creek, is below the required level of DO for all eight sampling events in August of 1996. The next upstream sampling site at 4750 experienced similar concentrations at the same time. Station 4974 had low concentrations for sampling events June 18th through 20th in 1996.

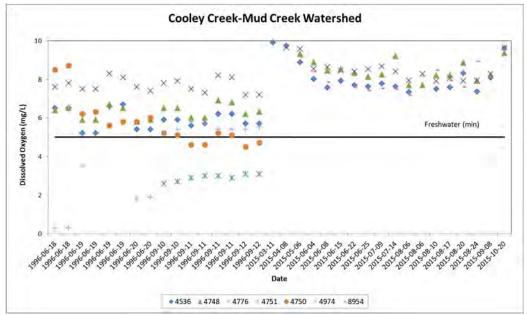


Figure 4.2: Composite time series of DO concentrations at ADEM data stations in Cooley Creek-Mud Creek Watershed

<u>Nutrients</u> – Nutrients enter surface waterbodies from a number of sources including: stormwater runoff from fertilized agricultural fertilizers and manure; erosion of soils; septic systems; domestic wastewater discharges; and even pet waste. High concentrations of nitrogen and phosphorus can affect other parameters and make it difficult for aquatic species to survive.

Threshold values (good and poor) for evaluating concentrations of total nitrogen (TN) and total phosphorus (TP) in this WMP were established by referencing EPA standards that are specific to the Alabama subecoregion (EPA, 2000). Alabama does not have state-wide parameters.

Figures 4.3 and **4.4** show time series plots of TN and TP data, respectively, from multiple stations in the Cooley Creek-Mud Creek Watershed that are positioned on each of the three creeks, Cooley, Mud, and Mill. The most downstream station in the Watershed, 4779, after confluence of all creeks, is included on the

graphs for comparison. The threshold criteria for TN include good (<0.58 mg/L) and poor (>0.58 mg/L), while the threshold criteria for TP include good (<0.02 mg/L) and poor (>0.02 mg/L).

Figure 4.3 shows TN concentrations at stations 4536, 4748, and 4776 reach far above the recommended levels in several sampling events. This occurs in both years 1996 and 2014. Site 4779 does not experience any elevated levels. **Figure 4.4** shows all TP concentrations measured in 1996 to be far greater than EPA standards. Data in 2015 substantially decrease and are much closer to accepted levels at all stations. In conclusion, these findings show that Cooley Creek-Mud Creek Watershed experienced elevated nitrogen and phosphorus. While nitrogen remains above standards from 1996 to 2015, phosphorus levels are low throughout the 2015 sampling year. Sampling stations with data only from June- September 1996 that are not included on the graphs have elevated levels of both nitrogen and phosphorus. High phosphorus is more common and correlates with high concentrations of bacteria.

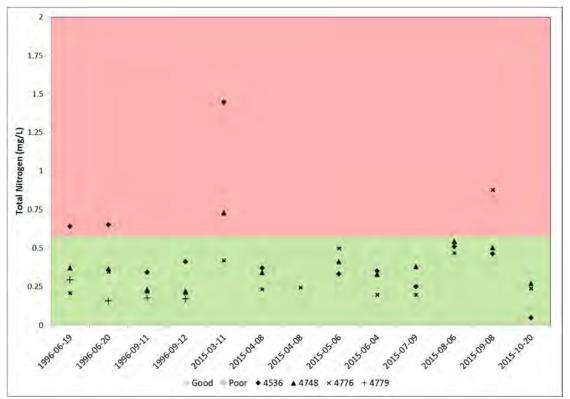


Figure 4.3: Composite time series of TN concentrations in the Cooley Creek-Mud Creek Watershed

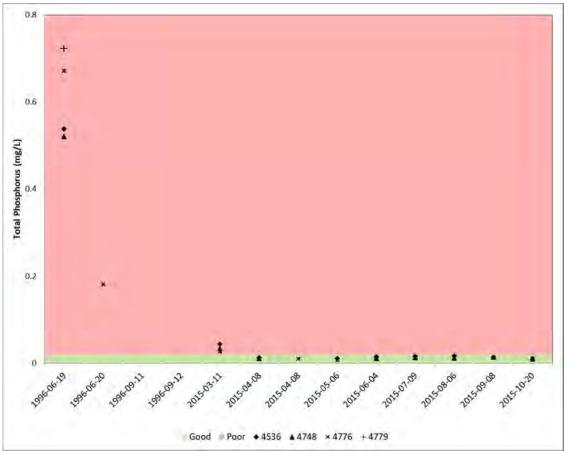


Figure 4.4: Composite time series of TP concentrations in the Cooley Creek- Mud Creek Watershed

Bacteria – All healthy surface waters contain a wide range of naturally-occurring bacteria. However, when bacterial concentrations become excessive and are dominated by bacterial indicator species, excessive organic enrichment and the presence of human pathogens, such as disease-causing bacteria and viruses, are possible. Sources of excessive and potentially harmful bacteria in surface waters include untreated domestic wastewater discharges from sanitary sewer overflows (SSOs) or septic tank seepage; animal waste from livestock farms, pets, and bird colonies; and even decaying grass clippings and other organic matter.

The Environmental Protection Agency (EPA) recommends *E.coli* as an indicator for fecal contamination from mammals versus previously monitored fecal coliform bacteria. One genus of fecal coliform, *Klebsiella*, comes from wood pulp and textile wastes (EPA, 2012). There is no known point source potential for any of these industries to discharge into the Shades Creek Watershed. It can be assumed that previously monitored fecal coliform is a good bacterial indicator.

Figure 4.5 shows a time series plot of fecal coliform bacteria concentration measured as a colony-forming unit (cfu) per 100mL of water at ADEM Stations. These stations are used because they are the only three ADEM Stations that have fecal coliform and *E. coli* data recorded from 1996 and 2014. Fecal Coliform limits in Figure 4.1.5 are referenced from a previous Code of Alabama Section 335-6-10-.09(5)(e)7 designated and desired uses categories for Fish and Wildlife that is stated in the TMDL report for fecal coliform in Shades Creek Watershed (EPA, 2003). Fecal coliform standards for Fish & Wildlife are less than 1000colonies/100mL in a geometric mean sample, and less than 200 colonies/100mL in a geometric mean sample in the months June-September when water contact and recreation might occur. There was no stated parameter for the designated use of Swimming and Other Whole Body Water-Contact Sports. Single sample limits were not used due to the fact that no data represented single sampling events.

Figure 4.5 shows that fecal coliform concentrations in 1996 frequently exceed the thresholds for Fish and Wildlife and water contact and recreation during June through September (labeled on the graph as Water Contact). Sampling time periods took place during summer months when water contact is more likely to occur. All but one other station that does not appear on the graph exceeds Water Contact maximum fecal coliform concentration during the June through September 1996 period.

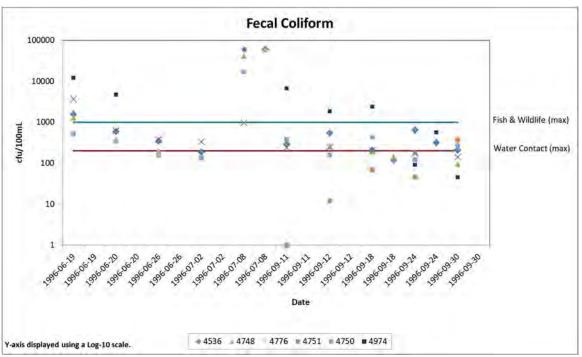


Figure 4.5: Composite time series of fecal coliform bacteria concentration for ADEM Stations in Cooley Creek-Mud Creek Watershed

Bacteria limits for *E. coli* are found in ADEM code 335-6-10 (ADEM, 2017b). The designations of Fish & Wildlife and Swimming & Other Whole Body Water-Contact Sports (S&WC) are displayed as 548 colonies/100mL in geometric mean and 126 colonies/100mL in geometric mean, respectively.

Figure 4.6 shows a time series plot of *E. coli* bacteria concentration measured as most probable number (MPN) at ADEM stations 4536, 4748, 4776, and 8954. The graph only has data from four stations in 2015 as these are the only stations that recorded *E. coli*. **Figure 4.6** displays that *E. coli* concentrations in 2015 are majority below standard levels. Several instances show samples that surpass S&WC levels. There is no clear trend of contamination increasing or decreasing.

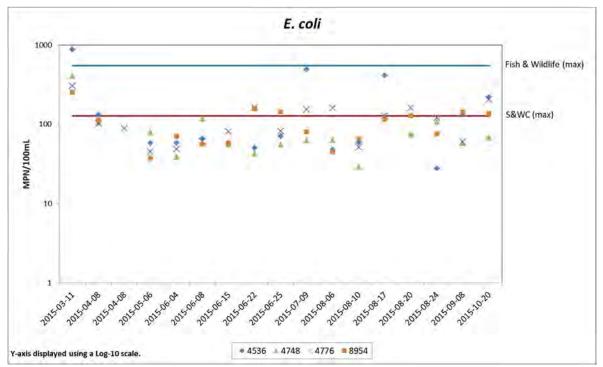


Figure 4.6: Composite time series of *E. coli* bacteria concentration for ADEM Stations 4536, 4748, 4776, and 8954 in Cooley Creek-Mud Creek Watershed

LOWER SHADES CREEK WATERSHED ADEM WATER QUALTY DATA

The Lower Shades Creek Watershed encompasses 69.5 square miles with approximately 602051 feet (or 114 miles) of surface water drainages (USGS, 2017). From the eastern and northern boundaries of the Watershed to the confluence with Cahaba River, the relief is approximately 420 feet. Lower Shades Creek runs through Shades Valley in between Red Mountain and Shades Mountain. Relief throughout the region is gradual from Little Shades Creek at the highest point to confluence with the Cahaba River at the lowest. The northeastern portion of this Watershed, north of Interstate 459, is an upland area that exhibits 240 feet of elevation change. The more gradual topography of the lower half of the Watershed experiences approximately 180 feet of relief as Shades Creek reaches the Cahaba River (ESRI, 2019).

Water quality sampling stations in the Lower Shades Creek Watershed are shown in **Figure 4.7**. ADEM station 828 provides the most long-term data from the upper portion of Shades Creek with a period of record dating from 1991 to 2003. There is more recent data at other sampling locations that offer an idea of how the water quality changes over time.

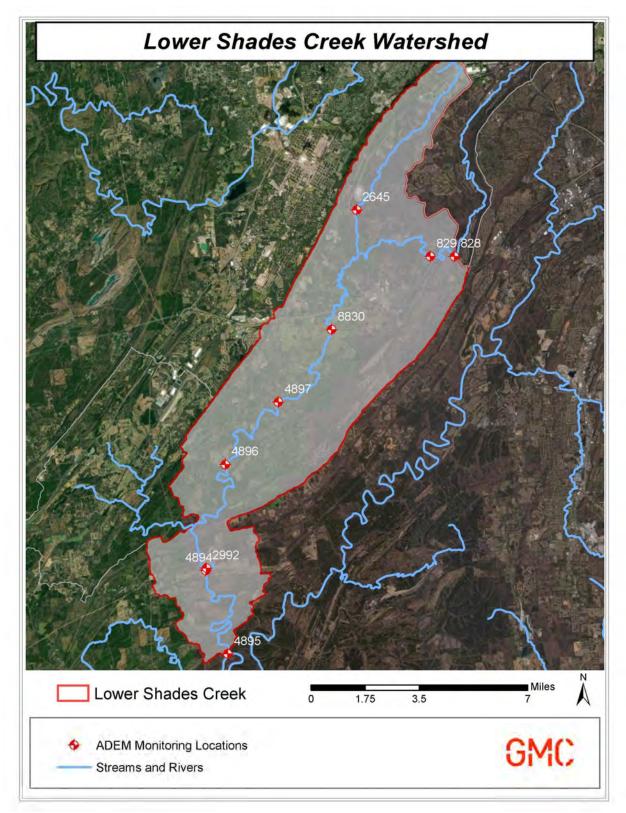


Figure 4.7: Water quality sampling stations in the Lower Shades Creek Watershed

Dissolved Oxygen – Figure 4.8 gives a time series plot of DO data from multiple water quality stations in the Lower Shades Creek Watershed compared to ADEM's freshwater criteria thresholds for F&W and S&WC designated uses. Figure 4.8 shows DO concentrations occassionally violating the regulatory criteria for freshwater, and shows violations have become much more frequent in the early 2000s. In 2018, station 2645 drops below recommended levels of DO.

The upper region of Lower Shades Creek Watershed, which includes headwaters of Little Shades Creek a portion of Shades Creek, experiences DO limit violations. The lower portion has no incidence of dipping below the threshold. It is possible that the increased urbanization in the upper region is contributing to the lower DO readings.

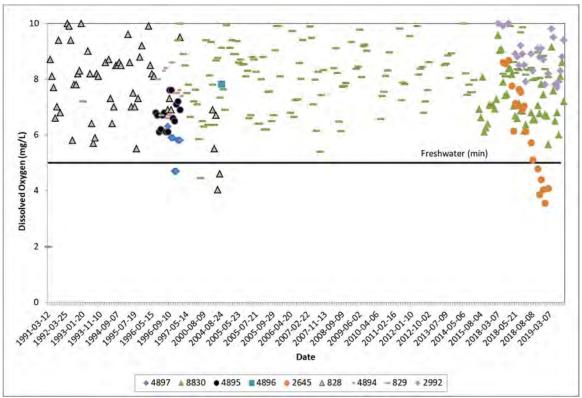


Figure 4.8: Composite time series of DO concentrations from multiple stations in the Lower Shades Creek Watershed

<u>Nutrients</u> – Figures 4.9 and 4.10 display time series plots of TN and TP data, respectively, from multiple stations in Shades Creek and Little Shades Creek segments of the Lower Shades Creek Watershed. These plots show TN concentrations in Lower Shades Creek Watershed are majority in the poor range, while TP are virtually always in the poor range. These findings show that the lower portion of Shades Creek is nutrient enriched with particularly high phosphorus concentration relative to recommended limit and moderately high nitrogen.

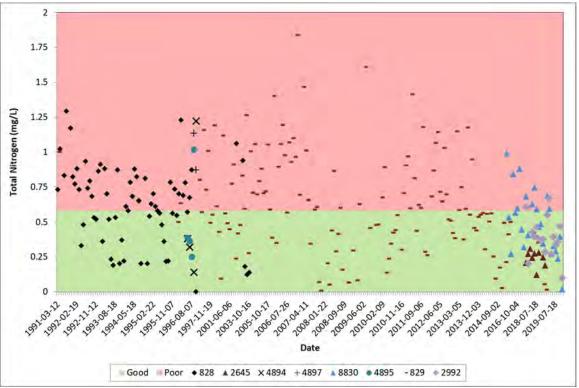


Figure 4.9: Composite time series of TN concentrations from multiple stations on Shades Creek and Little Shades Creek

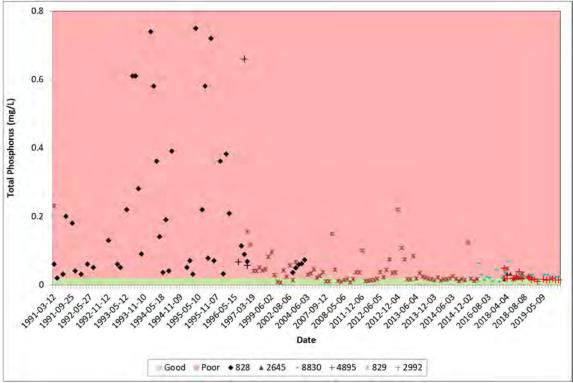


Figure 4.10: Time series of TP concentrations from multiple stations on Shades Creek & Little Shades Creek

<u>Bacteria</u> – Figure 4.11 shows a time series plot of fecal coliform bacteria concentrations at multiple ADEM stations with applicable regulatory criteria indicated. Figure 4.11 shows sampled bacteria concentrations at these locations within the Lower Shades Creek Watershed are frequently above both regulatory maximums, indicating generally unsafe swimming conditions and aquatic habitat. Consistent data at Site 828 from 1991 to 2003 shows that fecal coliform concentration in 2003 falls below recommended limits. Station 828 and 829, which are close in proximity on the creek, are the only stations that have fecal coliform data from 2003 to 2010. Station 829 frequently reaches above the maximum limit.

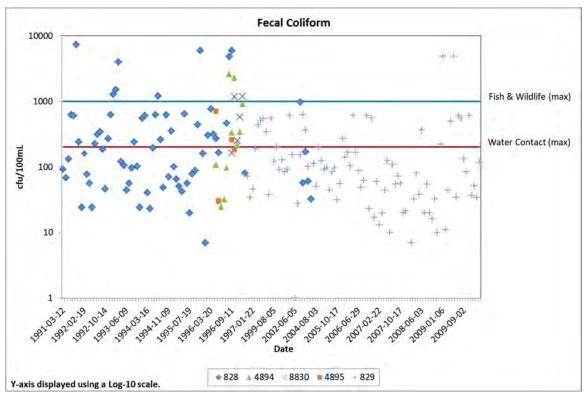


Figure 4.11: Composite time series of bacteria concentrations for multiple ADEM Stations on Shades Creek

A time series plot of bacteria concentrations measured as most probable number (MPN) at ADEM station 2645, located on Little Shades Creek, primary tributary to Shades Creek, stations 8830, 829, and 2992 on Shades Creek, are displayed in **Figure 4.12**. These stations are the only sites that have data on *E. coli*. This plot shows *E. coli* concentrations in the upper region of Lower Shades Creek Watershed frequently exceed regulatory standards. All sites show that E. coli concentrations do not have a specific trend, but they appear to surpass limits less frequently. This could be a result of better practices being implemented around the watershed.

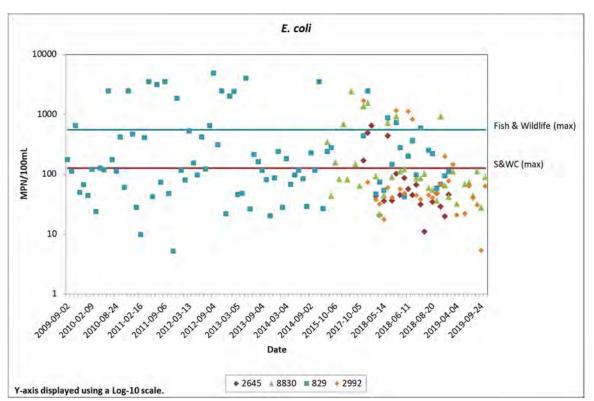


Figure 4.12: Composite time series of bacteria concentrations for ADEM Stations 2645 8830, 829, and 2992 located in Lower Shades Creek Watershed

UPPER SHADES CREEK ADEM WATER QUALITY DATA

The Upper Shades Creek Watershed encompasses approximately 41.2 square miles with approximately 262,765 feet (over 49.8 miles) of surface water drainages (USGS, 2017). The relief within the Watershed is approximately 220 feet. Gradual relief occurs as upper Shades Creek makes it way through the northeastern portion of Shades Valley. The Watershed is in a more densely populated area and runs adjacent to Birmingham (ESRI, 2019).

The Upper Shades Creek Watershed includes Shades Creek to its headwaters at the Birmingham Race Course. Sampling stations in this Watershed are shown in **Figure 4.13**. Only two ADEM stations are within this Watershed, and they both only include data from 2018.

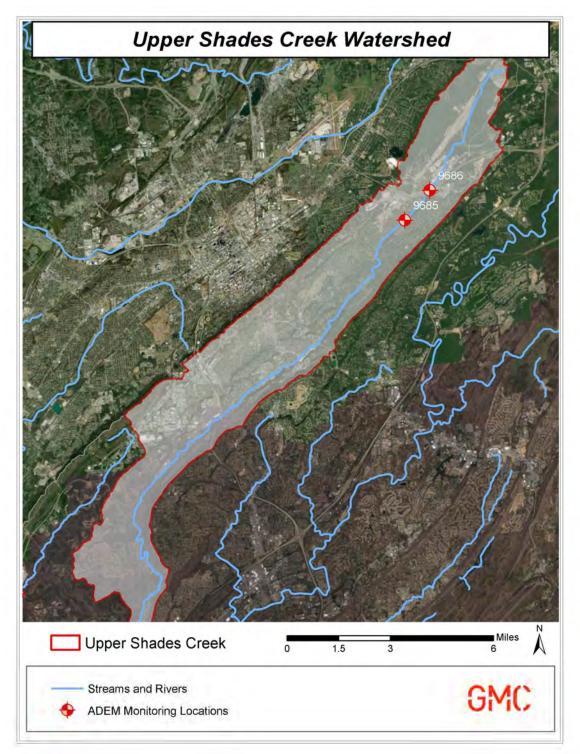


Figure 4.13: Water quality sampling stations in the Upper Shades Creek Watershed

Dissolved Oxygen – A plot of DO data from ADEM stations 9685 and 9686 with the freshwater criteria is shown on **Figure 4.14**. This plot reveals DO concentrations are always exceeding the regulatory minimum. The measured maximum DO concentrations have remained steady throughout 2018.

Similar trends in healthy oxygenated waters were observed in several of the tributaries to Shades Creek including Mud Creek, Mill Creek, and Cooley Creek. Three stations have infrequent DO recordings below 5mg/L, and one of those is Little Shades Creek for 2018. The lack of sampling stations in Upper Shades Creek makes it difficult to draw definitive conclusions on the DO. The only two ADEM sites are in the far northeastern region of Upper Shades Creek Watershed.

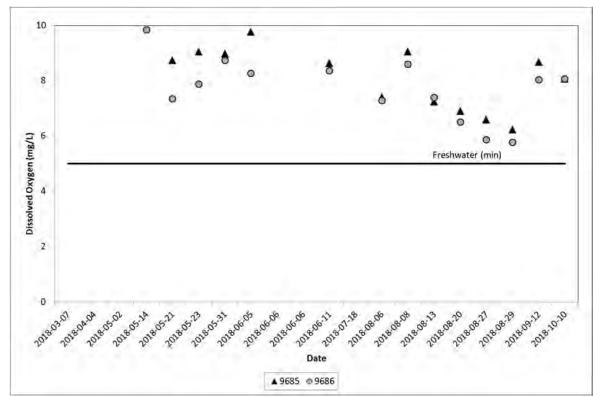


Figure 4.14: Composite time series of DO concentrations at ADEM Stations 9685 and 9686 in upper Shades Creek

<u>Nutrients</u> – Figures 4.15 and 4.16 display time series plots of TN and TP data, respectively, from multiple stations in the Upper Shades Creek Watershed. These plots show that TN and TP concentrations are majority in the good range. There are no significant trends in either TN or TP. There are just a few incidences where nutrient levels are too high but it is not consistent enough to cause algae blooms.

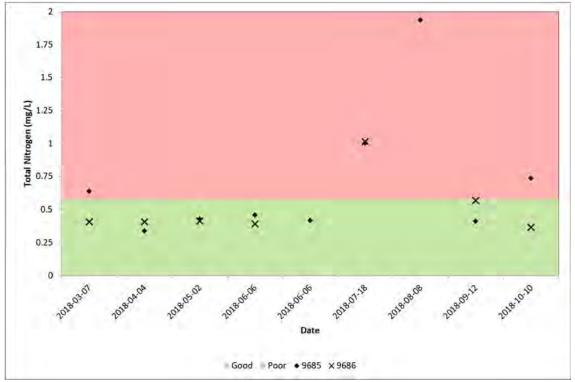


Figure 4.15: Composite time series of TN concentrations from two stations in upper Shades Creek

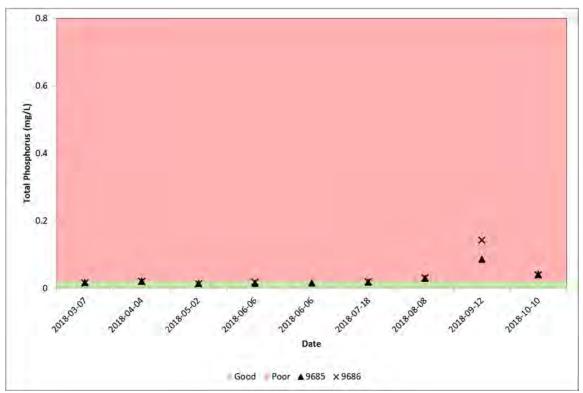


Figure 4.16: Composite time series of TP concentrations from two stations in upper Shades Creek

Bacteria – Upper Shades Creek Watershed did not have any data on fecal coliform bacteria at either station. Concentrations of bacteria measured as most probable number (MPN) of *E. coli* cells are shown in **Figure 4.17** for ADEM Stations 9685 and 9686 along with the applicable regulatory criteria. This time series plot reveals that bacteria concentrations are almost always above both maximums. *E. coli* concentrations appear to fluctuate during 2018 with no clear trend.

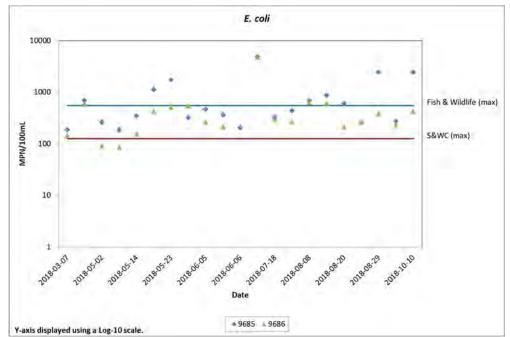


Figure 4.17: Time series of bacteria concentrations for ADEM Stations 9685 and 9686 in upper Shades Creek

- A. <u>METALS AND ORGANICS IN SHADES CREEK WATERSHED</u> ADEM has analyzed surface water samples from the Shades Creek Watershed for several common heavy metals including: arsenic, cadmium, chromium, copper, lead, mercury, nickel, silver, and zinc. However, the data for these parameters are very sparse. The data that are available generally indicate that metals concentrations in Shades Creek surface waters are frequently below detection levels and generally well below established EPA chronic and acute threshold levels. Three stations in the upper portion of Lower Shades Creek Watershed, 8830, 829, and 828, experience multiple heavy metal readings. There are insufficient data in the available ambient surface water datasets to assess organic contaminants in the Shades Creek Watershed.
- B. <u>SEDIMENT IN SHADES CREEK WATERSHED</u> Suspended sediment is defined as that portion of a water sample that can be separated from the water by filtering. This solid material may be composed of organic and inorganic particles such as algae; industrial and municipal wastes; urban and agricultural nonpoint source pollutants carried by runoff; and sand, silt, and eroded material from geologic formations. Large amounts or rain and fast flow can pick up sediment and wash it into the surface water. Fine particles suspended in the water deposit as silt and fill up lakes and streams where it can decrease the oxygen levels in water and harms the habitats for aquatic organisms (USGS). Many different things cause this such as unnatural stream bank erosion.

In **Figure 4.18**, the maximum level of NTU for a stream that supports Fish and Wildlife (F & W) is 50 NTU above background, as stated by ADEM (ADEM, 2017b). In 2003, Shades Creek was listed as impaired for support of F & W due to turbidity, siltation, and habitat alteration (EPA, 2003b). All sampling stations along Shades Creek within Lower Shades Creek and Upper Shades Creek Watershed are displayed on the graph to show turbidity levels from 1991 to 2018. There is a gap in data from 1997 to 2015 where only one site has data. There is no clear trend overtime. Since 2010, levels are exceeding the limits on multiple occasions at numerous sites.

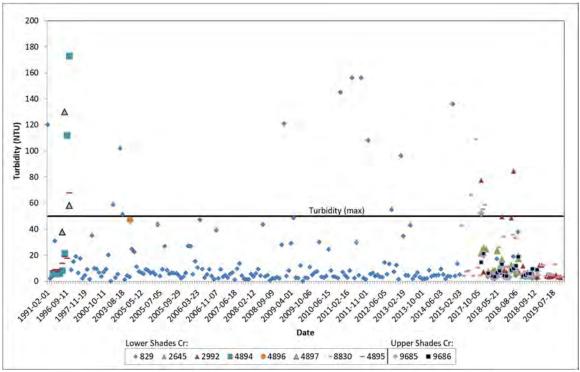


Figure 4.18: ADEM monitoring site locations in Upper and Lower Shades Creek Watersheds

The TMDL report for Shades Creek siltation included a study that found the average annual suspended sediment yield on Shades Creek. Using data from USGS and Stormwater Management Authority, Inc. (SWMA), the annual suspended sediment yield for Shades Creek was calculated as 52.6 T/y/km² whereas the "reference" for the Ridge and Valley median annual suspended sediment yield is 24.7 T/y/km² (EPA, 2003b). These findings reflect the impacts of intense urbanization on stream dynamics, erosion, and sediment loads. Most of the erosion in developed watersheds is caused by human activities. Upper Shades Creek Watershed is the most impacted within the Shades Creek Watershed by urban development and anthropogenic sources. Lower Shades Creek has also experienced development from agriculture. Different types of BMPs should be established where the siltation impact is higher.

4.2.2 Jefferson County Department of Health Water Quality Data

The Jefferson County Department of Health (JCDH) completed additional water quality sampling in Upper Shades Creek Watershed and sent it to GMC after the first steering committee meeting. Data all began around November 2010 and went into May 2019. This additional sampling data helps to provide a better representation of the condition of the Upper Shades Creek Watershed. **Figure 4.19** displays where monitoring stations occur in the watershed.

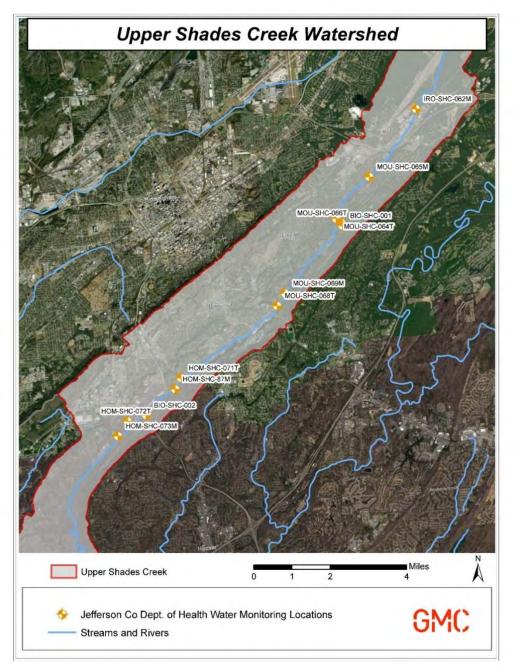


Figure 4.19 Additional water quality sampling stations in the Upper Shades Creek Watershed

<u>Dissolved Oxygen</u> - A plot of DO data from JCDH with the freshwater criteria is shown on **Figure 4.20**. This plot reveals DO concentrations are majority above the regulatory minimum of 5 mg/L. The measured maximum DO concentrations have remained steady throughout the sampling period. This data indicates that the DO levels are high enough to sustain aquatic wildlife within the watershed.

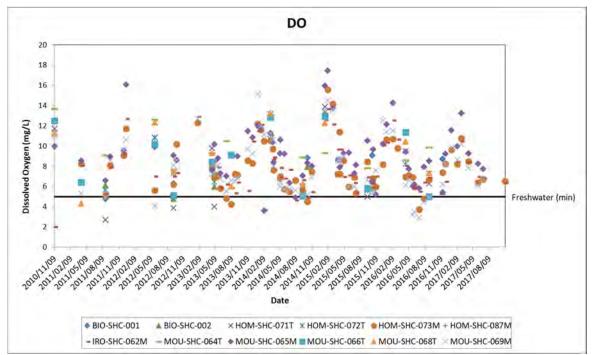


Figure 4.20: Composite time series of DO concentrations at JCDH stations in Upper Shades Creek

<u>Bacteria</u> – Figure 4.21 shows a time series plot of fecal coliform bacteria concentrations at multiple JCDH stations with applicable regulatory criteria indicated. Both wet and dry samples were collected historically with only wet samples being collected in the last five years. Sampled bacteria concentrations at these locations within the Upper Shades Creek Watershed are frequently below both regulatory maximums, indicating generally safe swimming conditions and aquatic habitat. Occassional data from multiple sites shows that fecal coliform concentration reaches above recommended limits during the summer months of June through September when water contact is more likely to occur.

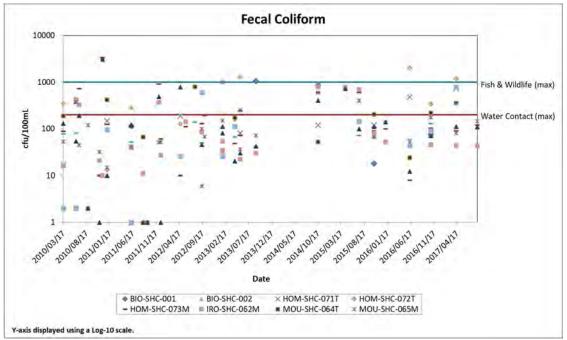


Figure 4.21 Composite time series of fecal concentrations at JCDH stations in Upper Shades Creek

A time series plot of bacteria concentrations measured as most probable number (MPN) at JCHD stations located along Upper Shades Creek are displayed in **Figure 4.22**. This plot shows *E. coli* concentrations in the upper watershed occasionally exceed both regulatory standards. All sites show that *E. coli* concentrations do not have a specific trend over time, but they appear to surpass limits less frequently.

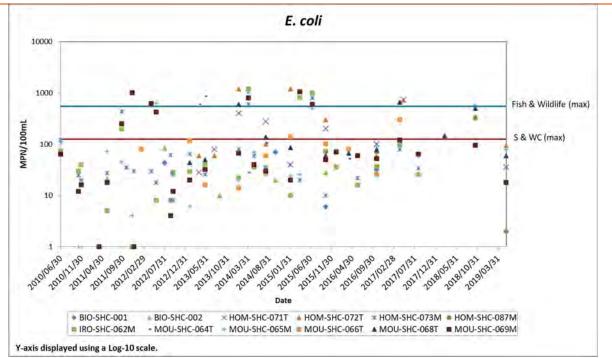


Figure 4.22: Composite time series of E. coli concentrations for JCDH Stations in Upper Shades Creek

4.3 NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMITS

4.3.1 Municipal Separate Storm Sewer System (MS4)

Under the 1987 Clean Water Act Amendments, the U.S. Environmental Protection Agency (EPA) developed regulations to address stormwater impacts to water quality. These regulations were set up in a phased approach under the National Polluted Discharge Elimination System (NPDES) permitting program commonly termed as a Municipal Separate Storm Sewer System (MS4) permit. In Alabama, the Alabama Department of Environmental Management (ADEM) enforces the NPDES MS4 permitting program. Phase I was issued in 1990 and dealt with MS4 permits for cities with a population of greater than 100,000 people. Phase II was issued in 1999 to include smaller urbanized areas, as well as small MS4s outside the urbanized areas that are designated by the permitting authority, to obtain NPDES permit coverage for their stormwater discharges. In addition to Jefferson County, Shelby County, and Tuscaloosa County (unincorporated areas), the cities of Bessemer, Birmingham, Homewood, Hoover, Irondale, Mountain Brook, and Vestavia Hills are all covered under a Phase I or Phase II MS4 permit.

The intent of the MS4I regulations is to reduce the adverse impacts to water quality and aquatic habitat by the development of a stormwater management program, instituting the use of controls and measurable goals. The following stormwater related minimum control measures are generally included in the MS4 permitting requirements:

- Structural Controls
- Public Education and Outreach
- Public Participation / Involvement
- Illicit Discharge Detection and Elimination (IDDE)
- Construction Site Runoff Control
- Post-Construction Stormwater Management
- Spill Prevention and Response
- Pollution Prevention / Good Housekeeping
- Industrial Stormwater Runoff
- Water Quality Monitoring and Reporting
- BMP's for Application of Pesticides, Herbicides, and Fertilizers
- Oils, Toxics, and Household Hazardous Waste Control

4.4 HABITAT CONDITIONS

4.4.1 Invasive Plant Species

The Shades Creek Watershed is host to several invasive plant species. Visual observations and known invasive species of concern in the Watesrhed include:

- Chinese Privet (*Ligustrum sinense*)
- Kudzu (Pueraria montana var. lobata)
- Cogongrass (Imperata cylinrica)
- Chinese Tallow or Popcorn Tree (*Triadica sebifera*)
- Japanese Climbing Fern (*Lygodium japonicum*)
- Eurasian Watermilfoil (*Myriophyllum spicatum*)
- Hydrilla (Hydrilla verticillata)
- Alligatorweed (Alternanthera philoxeroides)

<u>Chinese Privet (Ligustrum sinense)</u> – A shade tolerant, evergreen shrub, Chinese Privet is known for its ability to propagate in almost all habitat types including urban areas, upland forests, bottomland hardwood wetlands, etc. The distribution is almost the entire southeastern U.S. and it is found throughout the Shades Creek Watershed. This fast-growing species outcompetes native vegetation, and therefore inhibits native forest regeneration. Chinese Privet is dense along stream channels due to seed transport to downstream areas and throughout the Watershed.

Figure 4.23 Example of Chinese Privet (Courtesy of The Nature Conservancy)

<u>Kudzu (*Pueraria montana var. lobata*)</u> – Kudzu is native to China and was planted extensively in South in the 1930s, 40s and 50s for forage and erosion control. "The Vine that ate the South" continues to spread along edges of forests, pastures and right-of-ways and around cities and towns. During Spring, kudzu vines can grow up to a foot a day, covering trees, buildings, fences, road signs and telephone and utility poles. In the late 1980s, a county agent survey estimated about 250,000 acres were infested by kudzu in Alabama. Control treatments have been successful using herbicides, overgrazing and mechanical root removal. Kudzu can be found throughout the Shades Creek watershed.

Figure 4.24. Example of Kudzu (Courtesy of Kudzu © reophax/Flickr Creative Commons)

<u>Cogongrass (Imperata cylinrica)</u> – Cogongrass is a perennial grass that forms dense circular infestations that exclude all native species. It is highly flammable and poses a severe fire hazard. This aggressive grass is difficult to eradicate even under strict management practices. It was introduced into the Mobile area in the early 1900's and is steadily spreading northward by windblown seeds, movement of contaminated fill dirt, and probably through horticultural plantings (there is a commercial red variety) as well as sale of hay, pine straw and straw from infested areas. This is a federal and Alabama State listed noxious weed. Successful eradication is achieved with multiple herbicide treatments over several years. Although not prominent in the Shades Creek watershed, there is evidence that this could be a future concern.

Figure 4.25. Example of Cogongrass (courtesy of Alabama Cooperative Extension Service)

<u>Chinese Tallow or Popcorn Tree (*Triadica sebifera*)</u> – Native to Asia, the distribution of Chinese Tallow trees (**Figure 4.26**) is widespread throughout Alabama. Easily recognizable by its diamond-shaped leaves, it exhibits vibrant fall foliage. This fast-growing species, combined with astonishingly high seed yields, allows for rapid expansion. In addition, it easily adapts to various soil types and conditions. Chinese Tallow trees are more prominent in the southern portions of the state, but have been reported in Jefferson County and generally can be found in clear-cut or areas of disturbance such as power-line easements and along stream channels.

Figure 4.26. Example of Chinese Tallow or Popcorn Tree (Courtesy of Alabama Forestry Commission).

<u>Japanese Climbing Fern (Lygodium japonicum)</u> – Native to Asia and Australia, Japanese Climbing Fern is a viney perennial fern found throughout the southeastern United States. The Japanese Climbing Fern, shown in **Figure 4.27**, is spread through wind-blown spores and contaminated pine straw. Fronds die back after hard freezes, but dead vines provide a trellis for vigorous new growth in the Spring.

Figure 4.27. Example of Japanese Climbing Fern (Photo credit: Nancy Loewenstein, Auburn University)

Eurasian Watermilfoil (*Myriophyllum spicatum***)** – Eurasian Watermilfoil is native to Europe, Asia, and northern Africa, and was thought to be accidentally introduced from Eurasia in the 1940s. Eurasian Watermilfoil forms large mats on the water surface as shown in **Figure 4.28**.

Figure 4.28. Example of Eurasian Watermilfoil

<u>Hydrilla (Hydrilla verticillata)</u> – Native to India, Hydrilla was originally introduced as an ornamental aquarium plant trade in Florida. It has been transported throughout the waterways of Alabama via boats, boat trailers, and outboard motors, as Hydrilla can reproduce by fragmentation as well as from tubers produced at the ends of rhizomes. Hydrilla, shown in **Figure 4.29**.

Figure 4.29. Example of Hydrilla (Photo credit: C. Smoot Major, University of South Alabama)

<u>Alligatorweed (Alternanthera philoxeroides)</u> – Alligatorweed is a summer perennial herb that grows over water or on land. Alligatorweed, shown in **Figure 4.30**, is native to South America but occurs throughout Alabama. It was first documented in Mobile in 1897. By forming dense, tangled mats on the surface of waterbodies, Alligatorweed outcompetes native aquatic vegetation for sunlight.

Figure 4.30. Example of Alligatorweed (Photo credit: C. Smoot Major, University of South Alabama)

4.4.2 Wetlands

According to the U.S. Fish and Wildlife (USFWS) National Wetland Inventory (NWI), the Shades Creek Watershed contains approximately 4,978 acres of wetlands (4.61% of total area). The types of wetlands included in this data set are Freshwater Emergent, Freshwater Forested/Shrub, Freshwater Pond, Lake, and Riverine wetlands. The Cooley Creek-Mud Creek subwatershed has approximately 1,843 acres of wetlands (10.29% of the total land area), the Lower Shades Creek subwaterhsed has approximately 2,852 acres of wetlands (6.41% of the total area), and the Upper Shades Creek subwatershed has approximately 283 acres of wetlands (1.07% of the total area).

Undoubtedly wetland habitats have been impacted within the watershed due to urbanization and habitat alteration. A total of approximately 9.26 acres of the NWI wetland habitats have been impacted through individual Section 404 permitting since 2010. These totals only include permitted impacts for projects with greater than 0.5 acres of impacts. The historical impact to wetlands is also evident in that the most developed portions of the watershed (Upper Shades Creek) only contain approximately 283 acres of NWI wetlands, accounting for only 5.7% of the total wetlands in the entire watershed. This is an indication that urban development is a heavy contributer to wetland impacts in the Upper Shades Creek Watershed.

4.4.3 Streams

The Shades Creek Watershed contains at a minimum 295 linear miles of perennial streams along with a network of intermittent and ephemeral stream system. The current conditions of stream segments in the Shades Creek Watershed range from those that appear to be stressed, heavily impacted, altered, and unnatural stream systems to those that appear to be thriving, pristine, unaltered, and natural stream

systems. The varying degree of stream conditions observed for the watershed is reflective of the cumulative influence urbanization has had on the watershed.

4.4.4 Altered Hydrology

Changes in watershed uses and characteristics, including natural buffer removal and land use conversion to development, have the ability to impact a channel's natural geomorphology –specifically its dimensions, pattern, and profile. Development has the potential to alter specific stormwater runoff and flow regime patterns inherent in a natural, unaltered system. Increases in runoff due to increased impervious surfaces and the associated intensifications in hydrologic peaks and decreases in lag time during storm events potentially translate to increased flow and energy in channels that have evolved over time to convey lower flows in unaltered systems. The increased runoff has the potential to create new or exacerbate existing stream bank erosion, destabilizing streams and leading to headcutting and bank sloughing, augmenting sediment loads in the stream system.

Stream channels may have been physically altered, realigned, or channelized to allow for development or to address perceived concerns, such as flooding and erosion. Physical alterations may include, but are not limited to, concrete lining to create culverts or armoring with rip rap and gabions. In areas where vegetated stream banks may have been replaced by concrete-lined channels, conveyance for stormwater increases while flooding is reduced. However, infiltration is hindered, stormwater runoff volumes and pollutant loads are increased, and the natural habitats from the bed and embankments of the stream are destroyed, thereby hampering the natural ecological services provided by the stream. In some cases, areas with riparian buffer vegetation have been replaced by lawns to the stream bank edge, eliminating these productive ecotones along streams.

4.5 **RESILIANCY**

The Shades Creek Watershed is routinely affected by high volumes of rainfall associated with either frequent precipitation events in the form of isolated thunderstorms and rain events. When high volumes of rainfall occur over short durations it can cause localized or widespread flooding, particularly in areas where the natural hydrologic system, illustrated in **Figure 4.31**, has been altered. Therefore, it is important to understand a watershed's hydrologic resilience, monitor any resiliency changes, and properly plan for these changes. The term resilience means "the ability of a community to bounce back after hazardous events such as hurricanes, coastal storms, and flooding – rather than simply reacting to impacts" (NOAA, 2018).



Figure 4.31: General overview of the hydrologic cycle (from Shultz, 2017)

Many naturally occurring features or processes directly influence the hydrologic resilience of the Shades Creek Watershed including its geographic location within the Valley and Ridge region, existing physiography (predominately Appalachian Mountains and valleys), topography, annual rainfall (50 to 55 inches per year). In addition, the hydrologic resilience of the Watershed is affected by the built-environment (i.e. percentage of impervious cover, percentage of urbanization, etc.), which are discussed throughout this WMP.

Suburban cities such as Homewood and Mountain Brook have been increasing since 2010, while Birmingham and Bessemer have actually decreased (AI, 2017). Coupled with the potential impacts of climate change on storm intensity and frequency, communities will be required to plan for events where more citizens and their homes and businesses are in the path of increasingly dangerous and costly storm conditions. The planning and regulatory decisions communities are making today about how and where they develop dictate their ability to recover after tornadoes and flooding events. Understanding where and how our communities are vulnerable to loss from these hazards, and adapting planning and development practices to compensate for these vulnerabilities, will ultimately result in lives, dollars, and habitats saved and stronger communities and economies in the future.

4.6 ACCESS

Large stretches of the shoreline along Shades Creek are privately owned either by individuals or organizations, or have been developed as commercial properties. A limited number of parks and access areas exist along Shades Creek. Table 4.4.1 details the percentages of privately and publicly owned properties.

4.6.1 Land Use and Land Development

The land use among the three sub-watersheds are outlined in the table below. Agriculture, undeveloped land, and residential use all vary considerably between each watershed. Upper Shades Creek Watershed has the least amount of undeveloped land and highest amount of residential and commercial.

Cooley Creek-Mud Creek			Lower Shades Creek			Upper Shades Creek		
Acres	Percent	Use	Acres	Percent	Use	Acres	Percent	Use
1,620.10	21%	Agriculture	2,810.41	8%	Agriculture	43.71	0%	Agriculture
340.34	4%	Recreation	389.83	1%	Recreation	1,838.05	9%	Recreation
22.97	0%	Commercial	210.45	1%	Commercial	1,764.85	8%	Commercial
493.66	6%	Industrial	1,108.31	3%	Industrial	1,351.92	6%	Industrial
996.74	12%	Residential	4,735.95	14%	Residential	6,947.06	33%	Residential
4,046.17	53%	Undeveloped	25,169.42	72%	Undeveloped	8,244.50	39%	Undeveloped
88.66	1%	Other	334.82	1%	Other	870.56	4%	Other

Table 4.4: Land use by category in each watershed of Shades Creek

4.6.2 Recreational Opportunities

Recreational opportunities within the Shades Creek Watershed are limited and include a handful of trail systems and nature preserves. Cooley Creek-Mud Creek Watershed contains Tannehill State Park where Mud Creek runs through, and it stretches about 1500 acres. Previously the site of a rich iron industry, the Park is now great for hiking, camping, and outdoor recreation. The multi-use park also allows visitors to experience the history of craftsmen through museums and abandoned buildings.

Within Upper Shades Creek Watershed in Homewood, the city constructed a three mile long trail system called The Homewood Shades Creek Greenway and has plans to expand it. Near Samford University there is the 65 acre Homewood Forest Preserve adjacent to Shades Creek. In the 1990s Samford University had plans to develop the area, but the citizen-run group "Friends of Shades Creek" fought to protect the area. The City of Homewood bought the area and turned it into a nature preserve. These parks are tucked into urbanized areas where people can explore the diversity of wildlife and experience nature.

4.7 DATA GAPS

The compilation of information during the development of the Shades Creek WMP has led to the identification of significant gaps in the data acquired, which should guide future research and data collection relevant to the goals of the WMP. In addition, the temporal, spatial, and parametric coverage of ambient surface water quality data from Shades Creek have varied substantially, as very few stations have been monitored consistently since 1991 to present. Although sufficient historic and recent data exist to adequately determine the general status and trends in surface water, it is important to continually monitor in order to capture changes in water quality. The following recommendations are designed to address limitations in data sources as well as limitations in the data from existing sources, along with informational gaps, that makes identification of long term water quality trends difficult:

- 1. Long Term Trend Water Quality Monitoring program which should address nutrients, fecal bacteria, sediment and flow. Needed activities include:
 - Establishment of additional monitoring locations in the Lower Shades Creek and Cooley/Mud Creek watershed
 - Additional sampling locations and continued consistent parametric coverage at existing stations to support long-term tracking of status and trends and regulatory compliance.
- 2. Consideration for implementation of sampling locations for anthropogenic sources (pesticides / herbicides / petroleum / oil / grease)
 - Primarily caused due to stormwater runoff from agriculture, lawn and gardens, parking lots, and roads.
 - Monitoring parameters would indicate the success, or lack therof, the management measures in limiting unfiltered urban runoff into surface drainages.
- 3. Implementation of a pollutant source tracking program to include simultaneous measurements of flow, nutrient, sediment and bacteria at primary tributary inflows.
 - This program should also include microbial source tracking to identify animal sources (e.g., human, dogs, cattle, etc.) of any observed bacterial violations.
 - Assessment of sediment loadings specific to the primary tributary flows in order to identify source of input.
- 4. Biological and Habitat should be conducted in each sub-watershed and should include:
 - Assessment of the flora, fauna, and protected and invasive species specific to the Watershed.
 - Stream assessment for the main channels and major tributaries.
- 5. Develop a hydrologic model for the Shades Creek Watershed complex.
 - Detailed impervious surface analysis throughout the watershed.
 - Identify priority sub-watersheds that are experience flows that exceed the capacity of the infrastructure and natural systems.
 - Identify sub watersheds that need to regulate post construction peak flows to LESS than preconstruction post flows in order to address capacity issues.
 - Identify opportunities for the installation of green infrastructure (i.e. infiltration of stormwater runoff

Critical issues and areas affecting the health of the Shades Creek Watershed were identified by multiple lines of approach including Steering Committee input, public workshops, open houses, and a community survey regarding the conditions of the Watershed. An estimated 40 people attended the two public workshops. A total of approximately 58 issues were identified in the watershed. Through this outreach, the following list of critical areas and issues were identified.

5.1 WATER QUALITY AND POLLUTION

Water quality and pollution within the watershed was identified as priority issues based on public perception and input. Issues such as erosion and sedimentation, litter, nutrient loading, and pathogens were noted in the public engagement process and all contribute to degraded water quality in the watershed. Contributors to these issues, such as stormwater management, urbanization, stormwater and infrastructure issues are often correlated with each other; thus, they have been grouped together. When high volumes of rainfall occur over short durations it can cause localized or widespread flooding, particularly in areas where the natural hydrologic system has been altered. Urbanization alters the natural hydrologic system of the watershed by increasing the area of impervious surfaces. Trash, nutrients, and chemicals are delivered from these impervious areas to nearby waterways via stormwater runoff. Runoff carrying chemicals and trash, as shown in **Figure 5.1**, affects the entire Watershed in regard to water quality and pollution. Such runoff has led to increased bacteria, nutrient loading, and decreased dissolved oxygen in the nearby waterways. These parameters have failed to meet regulatory standards at ADEM monitoring stations many times in the past 25 years (see **Chapter 4**). This information, combined with results from other data collected during the course of this watershed assessment, can help determine where preservation and restoration activities should occur, and where to prioritize Watershed projects. The greatest reduction of sediment impacts on aquatic habitat will occur when conservation management systems are planned and installed on a whole-watershed basis.

5.1.1 Erosion and Sedimentation

Erosion and sedimentation were identified as high-priority issues in terms of water quality based on public perception and input. In 2003, Shades Creek was listed as impaired for support of F&W due to turbidity, siltation, and habitat alteration (EPA, 2003b). As described in **Chapter 4**, the TMDL report for Shades Creek siltation included a study that found the average annual suspended sediment yield on Shades Creek. Using data from USGS and Stormwater Management Authority, Inc. (SWMA), the annual suspended sediment yield for Shades Creek was found to be over double the "reference" yield for the Ridge and Valley median annual suspended sediment (EPA, 2003b).

These findings reflect the impacts of intense urbanization on stream dynamics, erosion, and sediment loads. Most of the erosion in developed watersheds is caused by human activities (see **Figure 5.1**). Upper Shades Creek Watershed is the most impacted within the Shades Creek Watershed by urban development and anthropogenic sources. Lower Shades Creek has also experienced development from agriculture. Different types of BMPs should be established where the siltation impact is higher.

Figure 5.1: Erosion and Sediment Runoff Post Rain Event on Bulldozed site, Shades Creek Watershed

Figure 5.2: Streambank Erosion in Irondale, Shades Creek Watershed

Land use plays a key role in erosion and sediment transport throughout a watershed. As mentioned earlier and in **Chapter 4**, urbanization and agricultural practices can significantly impact and alter a watershed's hydrology. Maps of land use/cover within the Watershed were created utilizing the GIS database of the Watershed (see **Chapter 3**), which help to identify these critical areas. The lands with significant amounts of impervious cover are critical areas where control and mitigation of runoff should be addressed. Sub-watersheds where stormwater best management practices are needed can be prioritized on the basis of where major stream bank erosion and/or known sediment issues are occurring, and based on developed areas with impervious surfaces.

5.1.2 Litter Accumulation

Trash and litter are regularly dumped into Shades Creek and its tributaries, via human transport and stormwater runoff alike. As detailed in **Chapter 2**, 85% of public survey respondents believe litter to be an issue needing to be addressed in the Watershed. When debris—plastic bags, bottles, cigarette butts, etc.—is thrown on the ground, it gets washed into storm drains and directly into local waterways. In addition to potentially choking, suffocating, or disabling aquatic life like ducks, fish, turtles, and birds, litter decreases oxygen levels in the water when it decays. Debris pile-up also causes habitat alteration.

Figure 5.3: Trash under bridge in Shades Creek

Plastic and organic litter can change the structure of river habitats and reduce the light level in the waters beneath the debris. All of these factors contribute to a habitat that is illsuited to support the aquatic plants and animals that rely on it for food and shelter, damaging the ecosystem of the river and, by extension, the surrounding forest or grassland. Too much litter lowers the recreational value of rivers, leaving them both contaminated and unused. Litter is one of the most noticeable forms of pollution in local waterways and can easily be prevented.

5.1.3 Nutrient Loading and Pathogens

In some of the surface waters of the Watershed, ADEM monitoring data indicate nitrate and phosphate concentrations regularly exceed regulatory limits (Chapter 4). This could potentially lead to excessive algae growth. Excessive algae growth leads to not only unsightly and odiferous conditions, but also, and more importantly, low dissolved oxygen levels in the water, as shown in Figure 5.2. Low dissolved oxygen levels can occur naturally, but negatively impact aquatic life when created artificially. This is especially harmful to benthic biota, which are a critical link in the food chain, and to juvenile fish that cannot easily escape low dissolved oxygen conditions. This could potentially be an issue in the lower portions of the watershed where agriculture is prominent.

Figure 5.2: Example of Algae bloom resulting from excessive nitrate and phosphate concentrations in surface waters

As indicated in the public survey, recreational value (e.g., swimming, hiking, canoeing, etc.) is of significant importance to the stakeholders and citizens in the Shades Creek Watershed (**Chapter 2**). Much of the surface waters in the Shades Creek Watershed have a water use designation of Fish and Wildlife (F&W) and Swimming and Other Whole-Body Water-Contact Sports (S&WC). However, the fecal coliform and *E. coli* data provided by ADEM show that concentrations frequently exceed regulatory standards, indicating generally unsafe swimming conditions and aquatic habitat. In order to address this issue, the source of the bacteria load in Shades Creek needs to be identified (septic failures, animal waste, storm sewer overflows, etc.). The implementation of a pollutant source tracking program for bacteria was identified as a data gap within the watershed in Chapter 4 of this Plan. To ensure safe conditions for aquatic habitat and recreational uses, it is especially important to address the harmful fecal coliform and *E. coli* levels in the watershed.

Considering the Watershed is used for aquatic recreation and is home to 26 federally listed threatened or endangered species, the loss of natural areas (urbanization), stormwater runoff, and pollution are serious issues that must be addressed. Upper Shades Creek and Lower Shades Creek sub-watersheds have experienced the most alterations due to a greater area of urbanization. This information, combined with results from other water quality data analyzed over the course of this watershed assessment, can help determine where preservation and restoration activities should occur, and where to prioritize Watershed projects.

5.2 STORMWATER MANAGEMENT AND INFRASTRUCTURE

In addition to the water quality issues discussed above, stormwater management practices and infrastructure within the Shades Creek complex were identified as priority issues based on public perception and input. Stormwater runoff has the potential to carry trash, pollutants, and sediments into surface waters of the complex. Further, during periods of high rainfall and flow events, deficient stormwater management methods may be overburdened and localized flooding and erosion may occur. Flooding was identified as a critical issue in the public participation process. Urbanization has collectively impacted and altered the natural hydrology and hydrologic functions of the Shades Creek Watershed complex resulting in a Watershed with reduced resilience. Consequently, the Watershed is susceptible to reoccurring flood events and is trending towards increased vulnerability to effects from storm events. These seemingly separate critical issues become interconnected when considering appropriate stormwater BMPs and infrastructure for a given watershed.

Litter, pollutants, and high volumes/velocities of runoff may all be delivered from developed areas. Therefore, urbanized lands with large areas of impervious surfaces are focal zones where evaluation, control and mitigation of stormwater runoff, and current stormwater BMPs and systems, should be addressed. Runoff is usually greatest in highly developed areas, such as the majority of the Upper Shades Creek Watershed. Though large portion of the Lower Shades Creek and Cooley/Mud Creek watershed remain undeveloped, future growth within rural or unpopulated areas of these basins should consider progressive stormwater BMPs with systems designed to account for increasingly heavy precipitation events, changing water tables, and climate change.

It was noted during field investigations for this WMP (Chapter 5) that many stream channels within the Shades Creek Watershed complex have been physically altered, realigned, or channelized to allow for development or to address perceived concerns, such as flooding and erosion. The most common alterations to natural streams include stream bank armoring and channelization. These tactics, originally intended to direct and enhance stormwater conveyance, actually result in confinement of flow and increase velocity within the channel, ultimately causing unnatural scouring and erosion. Within the Shades Creek complex, some water resources may be described as stressed, heavily impacted, or otherwise significantly altered from the native condition. This was most commonly observed in the Upper Shades Creek Watershed. Other streams within the complex, most notably the undeveloped areas, appear as thriving and persisting in a relatively natural condition. The contrasting degree of urbanization, acreage of impervious surfaces, and existing conditions of natural surface waters within each of the three subwatersheds that comprise the Shades Creek Watershed, reflects the need for differing approaches to current and future improved stormwater management practices.

5.3 LOSS OF NATURAL HABITAT

A total of 86.9% of responders to the online survey indicated that habitat conservation is needed in the watershed and 83.6% indicated that preservation of natural areas is needed within the watershed. The protection/enhancement of streams, wetlands, and riparian buffer habitats were specifically noted as a need in the Upper Shades Creek watershed.

Changes in watershed land uses/land cover characteristics, including the removal of buffer vegetation along stream channels or conversion of natural habitats to development affect the behavior of historic overland flows and discharge patterns to natural surface water features and resources (wetlands, rivers, streams, creeks, lakes, ponds, etc.). During severe storm events, runoff volumes and velocities are often amplified. When increased runoff volumes discharge into natural surface water features this may create new, or exacerbate existing, erosion. This can destabilize such natural surface water systems and lead to head cutting and bank sloughing, intensifying sediment loads (Rosgen, 1996). When infiltration is hindered, stormwater runoff volumes and pollutant loads are increased, and the natural habitats from the embankments of waterbodies receiving stormwater discharge are degraded. The ecological services provided by natural surface water features become impaired. In areas where riparian buffer vegetation has been replaced completely by lawn grasses or man-made materials, this eliminates productive habitats essential for infiltration and flow abatements. Naturally vegetated buffers along the limits of water resources reduce erosion and pollutants from adjacent impervious surfaces and lawns. Roots of native vegetation species also provide natural bank stabilization and increase habitat complexity, enhancing species diversity. Enhancement of the riparian buffer by re-planting native grasses, forbs, shrubs and trees is the first step in the recovery of the stream back to a more natural condition.

Wetlands are also important features in the landscape that provide numerous beneficial services for people and for fish and wildlife. Some of these services, or functions, include protecting and improving water quality, providing fish and wildlife habitats, storing floodwaters and maintaining surface water flow during dry periods. Due to the general topography and urbanization of the majority of the Upper Shades Creek Watershed, there are significantly less wetland habitats in the Upper Shades Creek portion of the watershed. The USFWS Wetland Inventory Map indicates only 109.22 acres of emergent and forested wetlands present in the Upper Shades Creek Watershed, versus approximately 2,200 acres in the Lower Shades Creek and 1,500 acres in the Colley Creek/Mud Creek watersheds. Protection of this resource is particularly important in the upper portions of the watershed.

5.4 PUBLIC EDUCATION AND AWARENESS

Public education and awareness were identified by 67.2% of survey respondents (see **Chapter 2**) as significant issues based on public perception and input. For example, many people are unaware that sewers and storm systems are separate, thus, what goes into a storm drain flows directly into the environment, untreated. Likewise, many people in the Watershed are not aware that their household cleaning chemicals, trash, or car wash fluids that are not controlled or disposed of properly will wash into the creek in which they recreate as well.

Furthermore, many people are unaware of the impact their pet's excrement has on a watershed. The need for pet waste receptacles was also identified in the public survey (**Chapter 2**). Pet waste contains bacteria and parasites like ringworm, salmonella, Giardia, and E. coli – to name just a few. Just one gram of dog waste can contain up to 23 million fecal coliform bacteria. These bacteria are known to cause serious health problems in humans, like intestinal illness and kidney disorders. One dog produces an average of 275 lbs. of waste a year. If there are approximately 10,000 dogs living in Homewood, then there is a potential of 1,375 tons of dog waste polluting local waterways each year in Homewood alone. Vestavia Hills and Birmingham are just a few of the many areas in the watershed that have ordinances for public spaces, specifically requiring the removal of pet feces by the pet owner. These ordinances are also enforced with fines ranging from \$25-\$100.

These are just a few examples of how public education and awareness is lacking and effecting the Shades Creek Watershed.

Management measures are potential opportunities and/or projects that can be implemented to target these critical issues and mitigate their impact to the overall health of the Shades Creek Watershed. These measures consider the collective information provided in the previous chapters of this WMP and integration of the items below:

- Concerns and priorities expressed by watershed stakeholders during community meetings conducted as part of this project, as documented in Chapter 2;
- Current characterization and conditions of the Shades Creek Watershed, as communicated in Chapters 3 and 4 respectively;
- Critical issues affecting the Complex, as identified in Chapter 5.

The subsequent discussions in this chapter address identified items of interest and then provide recommendations to potentially remediate such concerns as part of future studies or projects. Management measures outlined in this Chapter will help achieve the goals of this WMP which include:

- Improving water quality
- Protect natural areas
- Reduce flooding

6.1 STORM WATER BEST MANAGEMENT PRACTICES

Stormwater runoff is rainwater that collects and flows off streets, roofs, parking lots, driveways, and other impervious surfaces, with ultimate discharge, typically, into natural surface water resources. Data from ADEM and the EPA indicate as much as 55% of rainfall runs off an urban landscape, causing a host of environmental problems. Debris and litter, nutrients, metals, chemicals, sediments, and other nonpoint source pollutants are carried by runoff into receiving water bodies and wetlands, impacting plants, animals, fish, and humans. Improperly managed stormwater may also cause flooding, erosion, and infrastructure damage. Alabama has more than 132,419 miles of diverse water resources (USFS, 2020) that support rich biodiversity and adequate drinking and irrigation water supplies, while providing avenues of transportation and ecotourism. With increasing development across Alabama, stormwater runoff must be managed to properly and innovatively protect waterways. Litter has been a consistent issue facing the Shades Creek Watershed. Combating litter will take a multi-faceted approach that includes the expansion of existing programs, increased regulatory control and enforcement, and a relentless education component in order to treat the problem at its source. In addition to public outreach, active trash collection and removal efforts should be supported and enhanced as much as possible.

6.2 GREEN INFRASTRUCTURE

Implementing stormwater BMPs reduces runoff and increases infiltration of stormwater into the ground, important to restoring or maintaining adequate water quality. Green infrastructure (GI) uses vegetation, soils, and natural processes to manage stormwater and create healthier built environments with fewer negative impacts on surrounding green spaces and wildlife habitats. At the scale of a large city or region, GI refers to the overall network of natural areas that provide habitat, flood protection, and cleaner air and water. At the scale of a neighborhood or property parcel, GI refers to stormwater management systems that mimic nature by absorbing, storing, and infiltrating stormwater close to its source. Referred to on a site-specific scale as low impact development (LID) techniques, GI includes sustainable stormwater management utilizing natural hydrologic cycles through multiple non-traditional measures. LID practices preserving and re-creating natural landscape features, minimizing impervious surfaces, and incorporating stormwater as an on-site resource rather than a waste product include:

- Green roofs
- Rain barrels and cisterns
- Permeable pavements
- Bioretention areas
- Vegetated swales/dry swales

- Urban forestry/green streets
- Curb and gutter eliminations
- Vegetated filter strips
- Constructed wetlands
- Riparian buffers

These types of practices emphasize improved aesthetics, creation of wildlife habitats, and community involvement and engagement and, as noted by the EPA, typically have lower initial investment with the ability to be maintained similarly to other landscaped areas. Overall, GI disconnects impervious and disturbed pervious surfaces from the storm drain system and reduces post-construction stormwater runoff rates, volumes, and pollutant loads. Though some form of traditional stormwater infrastructure will remain necessary for current and future development within the Shades Creek Watershed, this may be augmented and supplemented by GI practices for improved effectiveness. Specific projects identified as potential locations for GI include the Brookwood Mall Redevelopment, Lakeshore Walmart Parking Lot, Grants Mill Station Parking Lot, Former Sam's Parking Lot (Grants Mill Road), the I-20 ROW Interchange (at Kilgore Memorial Dr.), and Watkins Brook at Lane Park.

GI planning requires the support through federal, state and local policies, programs and regulations encouraging the use of innovative watershed and stormwater management tools. GI planning, design, and intergovernmental coordination can not only help protect valuable terrestrial and aquatic resources from the direct impacts of land development, but also provide ancillary benefits such as reduced sanitary sewer overflow, reduced energy demand, urban heat island mitigation, improved air quality, and improved health for the community. Innovative techniques to consider for the "toolbox" include using:

- Small-scale, GI stormwater management practices to reduce post-construction stormwater runoff rates, volumes, and pollutant loads;
- Better site design techniques to minimize land disturbance;
- Land acquisition and better site planning techniques to protect and conserve valuable natural resources; and
- Comprehensive land use planning and zoning to direct growth away from sensitive aquatic and terrestrial resources.

The USDA-NRCS Web Soil Survey can be utilized as a preliminary tool to explore areas suitable for infiltration-based GI. This type of analysis can help identify depth to water table and hydrologic soil group (HSG) for each soil series and establish ratings for each based on typical GI design guidance. Most GI design manuals recommend a minimum of one or two feet of separation from the bottom of the GI practice and the seasonally high-water table (HWT) because this separation facilitates infiltration and dewatering between rainfall events. HSG is a characteristic that describes runoff potential for a soil, and subsequently infiltration potential. This type of preliminary soil series evaluation help identify areas suitable for GI. Potential specific project locations can then be identified based on the GI soil suitability class and ownership. The "Low Impact Development Handbook for the State of Alabama" (AL LID Handbook) can be utilized to calculate general sizing criteria for bioretention and permeable pavement systems. These two practices were selected because they are the most common GI practices and they provide the greatest benefits in terms of runoff volume reduction through infiltration and water quality treatment. A number of other LID practices that are described in the AL LID Handbook can be used as alternates if site constraints restrict usage for permeable pavement and bioretention. The primary alternates in areas with high water tables are constructed stormwater wetlands, wet enhanced swales, or vegetated/grassed filter strips. This type of GI and Soil Suitability analysis is a very useful for identifying potential GI projects within the watershed. Descriptions and examples of the primary recommended practices are presented below.

• A bioretention cell (BRC) is a shallow basin or landscaped depression designed to store, infiltrate, and treat stormwater runoff. It is excavated and backfilled with well-draining, engineered soil media and planted with native vegetation, grasses, or sod. Bioretention systems can also enhance habitat, mitigate for heat island effects, and improve water quality. They are designed to temporarily hold (24 hours post rain event) and slowly infiltrate stormwater runoff. Bioretention systems use many pollutant removal mechanisms (i.e., infiltration, absorption, adsorption, evapotranspiration, microbial and biological decomposition, plant uptake, sedimentation, and filtration) to improve stormwater quality prior to it leaving the system. Filtered runoff can exfiltrate into surrounding native soils, or these systems can be designed to use an underdrain to collect and return filtered runoff to the conveyance system. Figure 6.1. presents a typical BRC profile. For retrofits, large parking areas that are completely impervious can be retrofitted with BRC's by removing a small number of parking stalls, or landscaped islands can be transformed to bioretention if grading is appropriate or easily adjustable through milling.

Figure 6.1: Typical BRC Profile (ACES 2016)

Enhanced swales (bioswales) are a type of bioretention system constructed on a slope and also providing stormwater conveyance. They differ from a typical grassed channel or ditch in that they utilize an engineered soil media or soil amendments and incorporate a series of berms or check dams to promote surface ponding, sediment capture, and infiltration. Figure 6.2 displays four different types of swale design. For retrofits, existing conveyance swales may be suitable for enhancing the underlying soil and adding check dams to promote more infiltration and water quality treatment.

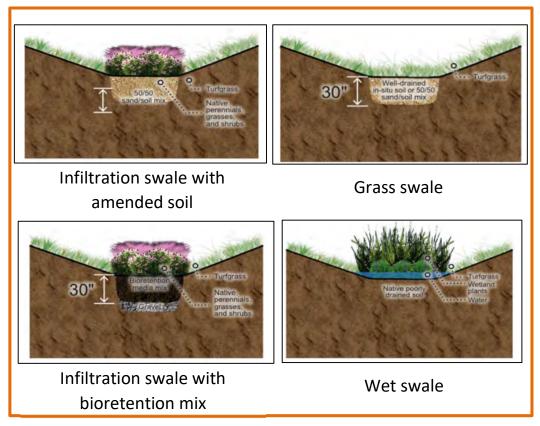


Figure 6.2: Typical Profiles of Enhanced Swales (ACES 2016)

Permeable pavement systems have structural units that include void (or open) spaces, allowing stormwater to infiltrate and get treated and stored in an underlying gravel base. The stormwater is then filtered through native soils or discharged through an underdrain. Permeable pavement types include, permeable pavers (bricksor blocks), along with pervious concrete and porous asphalt. Permeable pavers use pervious void space located between the pavers that is often filled with small aggregate. Figure 6.3 shows a typical permeable pavement profile. Permeable pavement systems are advantageous for stormwater management, particularly in areas where land values are high, as vehicles can drive and park on this stormwater BMP.

Figure 6.3: Example of Permeable Pavement

Constructed stormwater wetlands (CSWs) are another GI option; however, they do not promote
infiltration as rapidly as bioretention and permeable pavement. CSWs function like natural wetlands
to treat stormwater, in that they use biological, chemical, and physical processes to cycle nutrients,
promote sedimentation, and filter and decompose pollutants (ACES, 2016). They provide better
water quality treatment than retention and detention ponds. Figure 6.4 shows a typical CSW profile.

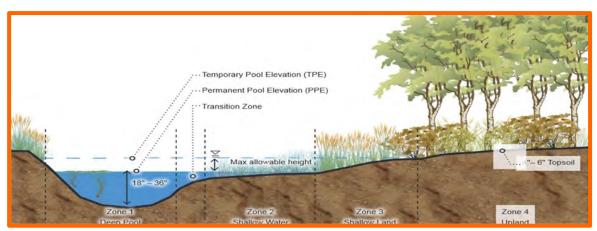


Figure 6.4.: Typical CSW profile

6.3 STREAM RESTORATION

The process of stream restoration through natural channel design involves a multiple step approach that includes data collection, engineering and scientific assessment, design, construction, monitoring, and maintenance. The success of stream restoration is contingent upon sound design methodology and implementation. The restoration approach follows specific published guidelines and methods endorsed by numerous institutions and regulatory agencies, including the U.S. Environmental Protection Agency (EPA), U.S. Army Corps of Engineers (USACE), U.S. Fish and Wildlife Service (USFWS), and the North Carolina Stream Restoration Institute. In-stream restoration, stream bank stabilization, and riparian buffer restoration/enhancement all fall under the category of stream restoration.

6.3.1 In-Stream Restoration and Streambank Stabilization

The following is a description of the multi-step process for conducted stream restoration activities:

1. Identification of Impaired Stream

The identification and assessment of an impaired stream is the first step in the stream restoration and design process. The stream is classified through the Rosgen Classification of Natural Rivers based on collected data. The data obtained from the project stream also provides details regarding stream channel stability, potential for further degradation, and health of habitat. At this point, certain goals and a preliminary design approach may be identified as the stream design process continues.

2. Identification of Reference Streams

Following evaluation of the impacted stream reach, streams in close proximity to and within the same watershed as the impacted stream are identified and assessed with regard to their quality and value to the restoration project. From an engineering standpoint, these reference streams are judged based on apparent channel stability and certain morphological parameters. Similarities in surrounding topography and soil substrate are also compared between the reference streams and the impacted stream. Certain factors help identify reference stream suitability in the design approach. These factors include low-impact watershed use, bankfull at the top of the bank, well-vegetated stream banks, and properly located bed features.

Data collected from the reference streams include, but are not limited to, feature spacing, length and slope, bankfull width and depth, stream sinuosity, and radius of curvature. This data is then processed to develop target dimensions, patterns, and profiles for the design of the impacted stream. Collecting and processing data from streams of varying watershed sizes, or drainage areas, helps to determine "trends" in channel dimensions for the geophysical region. These reference streams can be scaled to match the drainage area of the stream channel being designed. From a biological standpoint, reference streams are assessed based on habitat diversity, biota, and overall ecological quality. Ecologists assess the diversity of available habitat types including riffle/run sequences, woody debris, nutrient availability, and riparian buffer establishment. Baseline data is collected to identify the presence of biota in the reference stream and project reach. This data is used to gauge the long-term ecological success of the restoration project.

3. Design Development

Once data describing existing conditions has been collected from the impaired stream and reference data has been collected from reference streams, detailed restoration design of the impacted stream can commence. One crucial parameter of design is bankfull discharge. Bankfull discharge is calculated based on the anticipated one- to two-year rainfall event, drainage area for the project reach, land use within the drainage area, and substrate characteristics. This data is entered into a hydrology model, which provides a bankfull flow rate target. Regional trend data collected from the reference streams should be used to corroborate the hydrology model. Utilizing the calculated flow rate, anticipated channel slope for the restored stream, and projected channel "roughness," the size of the channel can be calculated to ensure overbank flow on an approximate annual frequency. Elevating the stream channel to meet its floodplain is important to make sure the channel is stable. Regional curves generated from recorded data are used in the validation of certain design criteria.

The layout of the stream design is then prepared using available topographical data and data obtained from the reference streams. Taking into account the characteristics of the land and the potential constraints in the surrounding area, the layout design can follow four different approaches. The four priorities for restoration of impaired and incised streams were developed by Dave Rosgen and include the following:

- **Priority 1:** Establish bankfull stage at the historical floodplain elevation.
- **Priority 2:** Create a new floodplain and stream pattern with the streambed remaining at the present elevation.
- **Priority 3:** Widen the floodplain at the existing bankfull elevation.
- **Priority 4:** Stabilize existing stream banks in place.

Priority 1 Restoration: Establish bankfull stage at the historical floodplain elevation. For a Priority 1 restoration, the incised channel is re-established on the historical floodplain using the relic channel or by way of construction of a new morphologically-stable channel. The channel is "lifted" to a higher elevation in order to connect with the historical floodplain, as illustrated in **Figure 6.5**. The new channel has the dimension, pattern and profile characteristic of a stable form, and its floodplain is on the existing ground surface. The existing, incised channel is either completely filled, or partially filled to create discontinuous oxbow lakes and offline wetlands level with new floodplain elevation.

The surrounding land use may be prohibitive of this restoration approach. Priority 1 restorations typically result in higher flood elevations and require sufficient land for meandering, which can be a problem where flooding and land use issues exist. Constraints such as permanent culverts, upstream and downstream of the restoration reach, can also render this approach infeasible.

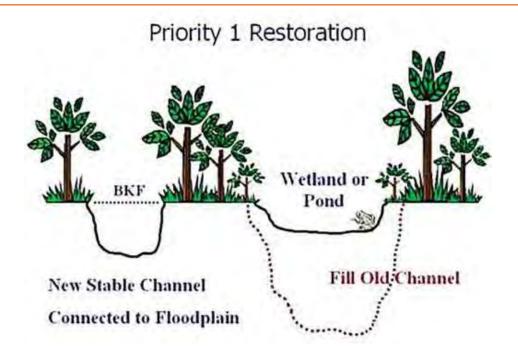


Figure 6.5: Conceptual cross section of Priority 1 restoration (Doll et al, 2003)

Priority 2 Restoration: Create new floodplain and stream pattern with stream bed remaining at the present elevation. In a Priority 2 restoration, a new, stable channel with the appropriate dimension, pattern, and profile is constructed at the elevation of the existing channel. A new floodplain is established, typically at a lower elevation than the historical floodplain, as depicted in **Figure 6.6**. The new channel is typically a meandering channel with bankfull at the elevation of the new floodplain. This type of project can be constructed in dry conditions while streamflow continues in its original channel or is diverted around the construction site.

A major advantage of the Priority 2 approach is that flooding does not increase and may in some cases decrease as the floodplain is excavated at a lower elevation. Riparian wetlands in the stream corridor created by the excavation may be enhanced with this approach. Priority 2 projects typically produce more cut material than is needed to fill the old channel. This means that designers must consider the expense and logistics of managing extra soil material excavated from the floodplain. Surrounding land uses can limit the use of this approach if there are concerns about widening the stream corridor.

Figure 6.6: Conceptual cross section of Priority 2 restoration (Doll et al, 2003)

Priority 3 Restoration: Widen the floodplain at the existing bankfull elevation. Priority 3 restorations entail converting the existing unstable stream to a more stable stream at the existing elevation and with the existing pattern of the channel but without an active floodplain, illustrated in **Figure 6.7**. This approach involves establishing proper dimension and profile by excavating the existing channel to modify the Rosgen stream classification. This restoration concept is implemented where streams are confined (laterally contained) and physical constraints limit the use of Priorities 1 and 2 restorations. A Priority 3 restoration can produce a moderately stable stream system but may require structural measures and maintenance. For these reasons, it may be more expensive and complex to construct, depending on valley conditions and structure requirements.

Figure 6.7: Conceptual cross section of Priority 3 restoration (Doll et al, 2003)

Priority 4 Restoration: Stabilize existing stream banks in place. In a Priority 4 restoration approach, the existing channel is stabilized in place utilizing stabilization materials and methods that have been used to decrease streambed and stream bank erosion, including riprap, gabions, and bio-engineering methods. Because this method does not address existing, excessive shear stress and velocity, which may have caused the impaired channel, it is considered high risk. This approach also limits aquatic habitat and is the least desirable option from a biological and aesthetic standpoint.

Priority	Advantages	Disadvantages
1		Increases flooding potential / Requires wide stream corridor / Cost associated with excess soil disposal / May disturb existing vegetation
2	Results in long-term stable stream Improves habitat values / Enhances wetlands in stream corridor / May decrease flooding potential	Requires wide stream corridor / Requires extensive excavation / May disturb existing vegetation
3	flooding potential / Maintains narrow	May disturb existing vegetation / Does not enhance riparian wetlands / Requires structural stabilization measures
4	May stabilize stream banks / Maintains narrow stream corridor / May not disturb existing vegetation	Does not reduce shear stress / May not Improve habitat values / May require costly structural measures / May require maintenance

Table 6.1 Advantages and Disadvantages of Priority Types

The severity of impairment, land-use constraints, and availability of resources are assessed in the selection of the appropriate priority type for the restoration approach. In-stream structures are also integrated into the design to serve multiple purposes. The structures, which are typically constructed of log and/or rock material, may be used to protect stream banks by directing flow towards the center of the channel, provide grade control where the stream might be prone to head cutting, and enhance stream habitat by creating riffles, plunge pools, and other habitat features. Bioengineering techniques can also be implemented that utilize both woody debris and living vegetation to armor stream banks and provide growing roots for soil stabilization along the bank.

Once the design has been prepared, the functionality of the stream is assessed. The Hydrologic Engineering Centers River Analysis System (HEC-RAS) surface-water hydraulic model is run to predict water levels within the stream during bankfull and other high-flow events, if necessary, based on calculated flow regimes. The model will indicate whether the current design parameters will allow for bank topping during a predicted bankfull flow event. The model can illustrate the impact of the proposed stream design on flood events

during periods of greater flow to make sure the design does not adversely affect the surrounding area. It can also demonstrate anticipated stresses and velocities within the stream and on the floodplain to determine if these factors exceed the project's ability to perform. The results are reviewed to examine the effectiveness of the design and any needs for revision. Consequently, additional design iterations may be necessary to ensure the best final stream restoration design.

4. Construction

Upon approval of the final stream design by the client and regulatory agencies, the project moves into the construction phase. Any site preparation needed prior to construction, including mobilization, staging, creating temporary access, clearing and grubbing, and stockpiling, is performed. The project site is staked for construction by incorporating Global Positioning System (GPS) and conventional surveying techniques. Project engineers ensure the stream design is constructed in accordance with the design plans, and are available to field engineer any modifications required. Project scientists work with the engineers and construction team to incorporate habitat features that lead to the overall ecological success of the project. Best management practices are incorporated to minimize unnecessary pollution to the stream during the construction phase. Eco-friendly materials are used to stabilize the stream channel until vegetation can be established. This includes coconut fiber coir matting and wooden eco-stakes along the slopes of the stream bank.

Vegetation is vital to the stability of a newly-constructed channel and floodplain. Temporary seeding is critical upon construction completion to provide instant stability to the construction zone and prevent excessive erosion and sedimentation. Permanent vegetation, which includes native herbaceous wetland plants, trees, and shrubs, is installed on the project site to provide long-term stream bank and floodplain stability and streamside habitat.

5. Monitoring and Maintenance

The final stage of restoration includes long-term monitoring of the restoration project. The success of a stream restoration is based on several factors, including regulatory requirements, channel stability, ecological diversity, and client satisfaction. Periodic maintenance should be considered a requirement for stream restoration projects. Supplemental seeding, in-stream structure repair, resetting or replacement of erosion control matting, and vegetation replacement are some of the potential maintenance requirements. Providing regular maintenance that addresses stream issues helps prevent or mitigate potential large-scale, long-term failures.

6.3.2 Stream Buffer Restoration

Riparian buffers are vitally important to the overall health of a stream. Buffers are the transition zones that connect uplands (urban, natural, etc.) to floodplain wetlands and, ultimately, creeks, streams, and rivers. As discussed in Chapters 5 and 7 of this Plan, there are streams and other surface waters in the Shades Creek Watershed with little to no riparian buffers.

The establishment of a riparian buffer zone will greatly enhance the environment of the channel and its surrounding areas. Riparian buffers decrease stream velocity, improve diffuse flow, and reduce nonpoint source pollution concentrations through nutrient cycling. They are also vital in the stabilization of streambanks, and provide habitats that attract and improve biodiversity. As identified in **Figure 6.8**, construction of a riparian buffer includes the following zones:

- Zone 1: Closest to the water body and generally 25-30 feet wide. A mix of wetland herbaceous and woody vegetation that has floodplain and/or wetland characteristics.
- Zone 2: The area between Zone 1 and the upland with a primary function of infiltration of runoff and filtration of pollutants. Zone 2 is generally 25-50 feet wide with woody vegetation.
- Zone 3: 25-foot strip of native grasses creating diffuse flow to Zone 2 (optional)

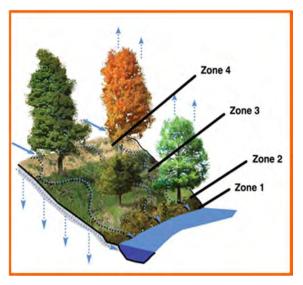


Figure 6.8: Riparian buffer zone diagram (LID Handbook for Alabama, 2014)

Protected or preserved riparian buffers, established for regulatory guidelines, can range from 25-150 feet, depending on state-specific regulations, but are typically 100 feet or greater.

6.4 ENCOURAGE IMPROVED FORESTRY AND AGRICULTURE BMPs

While forestry practices do not typically contribute as much sediment to surface waters as construction or agriculture, effects can be significant without proper management. Removal of overstory trees combined with operation of logging equipment throughout an area can compact soils, expose them to erosive weather forces, and increase overland flow transporting sediment. Additionally, improper construction of logging roads and loading docks create erosion problems along slopes due to exposed soils. Stream crossings and use of logging equipment within riparian areas can also exacerbate channel erosion by compromising bank integrity if proper techniques are not utilized.

The use of recommended management measures for forest operations can significantly reduce the amount of soil transported into streams and other waterways within the Watershed. Streamside management zones act as vegetated buffers, intercepting stormwater runoff and allowing sediments to fall out before reaching watercourses. Water crossings utilizing culverts or temporary bridges also help to maintain bank stability and prevent erosion directly adjacent to a stream. Forest roads and loading decks should employ a series of broad-based dips, turnout ditches, and water bars to slow runoff and hold sediments in place. More detailed descriptions of forestry management measures can be found in the *Alabama's Best Management Practices for Forestry* handbook. This handbook can be accessed at www.forestry.alabama.gov/Pages/Management/Forms/2007_BMP_Manual.pdf.

Although agriculture makes up a minimal amount of land use within the Shades Creek Watershed, at 0.06%, agricultural activities can significantly impact the amount of sediment entering a stream system if not managed properly. This is especially true in the Lower Shades Creek and the Colley/Mud Creek sub-watersheds where agricultural activities are more prominent. Improper agricultural practices, such as poorly located animal feeding operations, overgrazing, and plowing too frequently or at improper times, can contribute to excessive sediment loads entering surface waters. These adverse impacts can be avoided by using relatively simple management measures. The Natural Resources Conservation Service (NRCS) and Farm Service Agency offer numerous programs for public and private landowners a brief description of each is provided below (Source: www.nrcs.usda.gov/wps/portal/nrcs/main/national/programs/financial/eqip/).

- Conservation Stewardship Program provides financial and technical assistance to agricultural producers to implement enhanced conservation practices to improve plants for wildlife, grazing management to reduce soil compaction and improve riparian function.
- Environmental Quality Improvement Program (EQIP) is a voluntary program that provides financial and technical assistance to agricultural producers to plan and implement conservation practices that improve soil, water, plant, animal, air and related natural resources on agricultural land and non-industrial forestland. Within EQIP, the Air Quality Initiative provides financial ass stance to implement conservation practices that address air resource issues (greenhouse gas emissions, ozone precursors, volatile organic compounds, airborne particulate matter, and some odor-related volatile compounds) for designated locations.
- Emergency Watershed Protection Program (EWP) provides financial assistance for recovery efforts in response to natural disasters and is designed to help people conserve natural resources by relieving imminent hazards to life and property caused by floods, fires, drought, windstorms and other natural occurrences.
- Regional Conservation Partnership Program (RCPP) provides for public-private partnerships focused on improving water quality, combating drought, enhancing soil health, supporting wildlife and protecting agricultural viability.
- The Watershed and Flood Prevention Operations Program (WFPO) provides technical and financial assistance to state and local governments for planning and installing watershed projects.

The Agricultural Water Enhancement Program (AWEP) and the Wildlife Habitat Incentive Program (WHIP) were repealed on February 7, 2014 and new enrollments are no longer accepted. Conservation practices previously covered under the two programs are usually eligible under EQIP.

6.5 LITTER CONTROL MEASURES

As detailed in **Chapter 2**, 85% of public survey respondents believe litter to be an issue needing to be addressed in the Watershed. When debris—plastic bags, bottles, cigarette butts, etc.—is thrown on the ground, it gets washed into storm drains and directly into local waterways. In addition to potentially choking, suffocating, or disabling aquatic life like ducks, fish, turtles, and birds, litter decreases oxygen levels in the water when it decays. Debris pile-up also causes habitat alteration. As outlined in Chapter 5, plastic and organic litter can change the structure of river habitats and reduce the light level in the waters beneath the debris. Too much litter lowers the recreational value of rivers, leaving them both contaminated and unused. Litter is one of the most noticeable forms of pollution in local waterways and can easily be prevented.

One management measure for litter control are litter control devices that can be placed in the streams within the watershed to collect litter from being transported downstream. In 2018 as part of the "Osprey Initiative", the first litter control device was installed in the Birmingham metro area in Valley Creek. Currently, there are eleven litter control devices located in the Birmingham area with two (2) located within the Shades Creek Watershed. The two in Shades Creek Watershed include one at Griffin Brook (Homewood, funded by the City of Homewood) and one in Shades Creek (Homewood – Brookwood Mall, funded by the EPA).

Figure 6.9: Litter control device in Griffin Brook (Source: <u>Freshwater</u> Land Trust website)

Continued support and funding of these types of programs and for the implementation/maintenance of these devices will be beneficial to water quality in the watershed.

6.6 IMPROVE WATERSHED RESILIENCE

Many communities within the Shades Creek Watershed participate in the National Flood Insurance Program (NFIP), which allows property owners to receive federally subsidized flood insurance. Participation in this program requires the enforcement of a Flood Damage Prevention Ordinance. The objective of the ordinance is to minimize the potential for flood damage to future development. This ordinance has been effective in requiring new buildings to be protected from damage from the 100-year base flood. However, flood damage still results from floods that exceed the base flood, from flooding in unmapped areas, and from flooding that affects buildings constructed before the community joined the NFIP.

Under the Community Rating System (CRS), a national program developed by the Federal Emergency Management Agency (FEMA), communities participating in the NFIP can be rewarded for doing more than simply regulating construction of new buildings to the minimum national standards. When a community is approved to join the CRS program, the flood insurance premiums of that community's residents and businesses are discounted to reflect that community's work to reduce flood risk to existing buildings, protect new buildings beyond the minimum NFIP protection level, preserve and/or restore natural functions of floodplains, help insurance agents obtain flood data, and help people obtain flood insurance. This ensures communities are better prepared to withstand and recover from future flooding events.

The CRS program recognizes and awards credits for floodplain management activities in four (4) categories: public information, mapping and regulations, flood damage reduction, and warning and response. The more points a community receives, the better the discount property owners within that community receive on their flood insurance policies. **Table 6.2** shows the points awarded with the corresponding reductions in flood policy premiums that correspond with those scores.

TABLE 6.2: CRS POINTS AND INSURANCE PREMIUM REDUCTION								
CRS Classes	Points	Policies inside the	Policies outside the					
	Foints	Regulatory Floodplain	Regulatory Floodplain					
1	4500+	45%	10%					
2	4000-4499	40%	10%					
3	3500-3999	35%	10%					
4	3000-3499	30%	10%					
5	2500-2999	25%	10%					
6	2000-2499	20%	10%					
7	1500-1999	15%	5%					
8	1000-1499	10%	5%					
9	500-999	5%	5%					
10	0-499	0	0					

Source: FEMA, 2020

In 2021, FEMA issued an addendum to the 2017 National Flood Insurance Program Community Rating System Coordinator's Manual (CRS Manual). The CRS Manual explains how the program operates, credit criteria, how credits are calculated for community activities and programs that go above and beyond the minimum requirements for participation in FEMA's National Flood Insurance Program. The Coordinator's Manual is available in Adobe pdf format at <u>www.CRSresources.org</u>. Although the CRS Manual is primarily a reference for CRS activities and credits, it can also help guide communities that want to improve their floodplain management programs and make their communities more resilient to future flooding events.

Several, but not all of the communities within the Shades Creek Watershed currently participate in the CRS program. All communities within the watershed should review the CRS program and with the benefits of participating in CRS. Recommended management measures include:

- Plan for Public Information: A Program for Public Information (PPI) is a committee-based localized approach to community outreach and education on flood hazards and flood insurance. The goal of a PPI is to encourage community outreach that is designed to meet local needs and to develop a program that monitored, evaluated, and revised to improve effectiveness. Once implemented a PPI can be a powerful tool to organize community engagement and ensure that activities are effective and streamlined.
- Natural Floodplain Functions Plan: This plan is designed to aid in the understanding of floodplain natural resources and functions and to examine strategies and tools to protect, preserve and/or restore these resources. Natural Floodplain Functions are currently defined by the CRS Glossary as: a) The functions associated with the natural or relatively undisturbed floodplain that moderate flooding, retain flood waters, reduce erosion and sedimentation, and mitigate the effects of waves and storm surges from storms; and b) Other significant beneficial functions, which include maintenance of water quality, recharge of groundwater, and provision of fish and wildlife habitat.
- Flood Hazard Mitigation Plan: This plan is intended to assess current flood hazard conditions, including historically flooded areas and the most critical repetitively flooded properties, and to develop appropriate mitigation strategies for the local government to consider in reducing or eliminating future flood losses.

A variety of management measures are needed to improve the health of the Shades Creek Watershed. A clear, concise strategic approach will be necessary to successfully implement these measures. This approach should involve all stakeholders within these watersheds, as well as the cities, counties, state, and federal agencies including, but not limited to, those listed in **Table 7.1**. Coordination of so many stakeholders will be greatly enhanced by having a long-term champion and advocate for this WMP. The strategies discussed below will help to successfully implement the management measures recommended in this WMP. Many of these actions can be concurrently implemented.

SHADES CREEK WATERSHED STAKEHOLDERS								
The Nature Conservancy (TNC)	Jefferson County Department of Health (JCDH)	Alabama Department of Environmental Management (ADEM)						
Friends of Shades Creek	Jefferson County	Natural Resources Conservation Service (NRCS)						
The Cahaba River Society (CRS)	Tuscaloosa County	Alabama Department of Conservation and Natural Resources (ADCNR)						
The Cahaba Riverkeepers	Shelby County	Tannehill Ironworks Historical State Park						
Freshwater Land Trust (FWLT)	Bibb County	Alabama Forestry Commission (AFC)						
Cawaco RC&D Council	City of Irondale	Alabama Department of Transportation (ALDOT)						
Samford University	City of Homewood	Alabama Power						
Ruffner Mountain Nature Coalition	City of Birmingham	U.S. Army Corps of Engineers (USACE)						
Alabama Water Watch (AWW)	City of Mountain Brook	U.S. Fish and Wildlife Service (USFWS)						
Local businesses and industries	City of Hoover	Geological Survey of Alabama (GSA)						
Local civic organizations	City of Vestavia Hills	Birmingham Business Alliance (BBA)						
Local residents	City of Bessemer	Goodwyn Mills Cawood (GMC)						

Table 7.1 Shades Creek Watershed Stakeholders

7.1 MANAGEMENT STRATEGIES

The issues and problems threatening the health of the Shades Creek Watershed occur throughout the three (3) sub-watersheds and extend across political boundaries. The Shades Creek Watershed is located partially within the jurisdictions of Jefferson County, Bibb County, Shelby County, Tuscaloosa County, and the Cities of Irondale, Homewood, Birmingham, Mountain Brook, Hoover, Vestavia Hills, and Bessemer. Due to this, site inspections and enforcement of management ordinances cross many jurisdictions. Organizations who monitor water quality should expedite the process of voicing water quality concerns to the appropriate regulatory agencies so these agencies can implement necessary enforcement actions.

7.2 INTERIM MILESTONES

Interim milestones should be established to support detailed scheduling and task tracking. These milestones should identify specific goals, and the time frame within which those milestones should be accomplished. Milestones can be loosely organized into short-term (one to two years), mid-term (two to five years), and long-term (five to ten years or longer) categories.

7.3 IMPLEMENTATION SCHEDULE

Implementation of recommended management measures should begin immediately following approval of the Shades Creek WMP. Initial implementation should focus on the most critical issues and prioritized management measures identified in the WMP. The following steps should be given priority:

- Apply for and solicit funding within the first year.
- Establish the Public Education and Outreach Program within the first year.
- Establish a formal Monitoring Program as soon as funding becomes available.
- Implement priority management measures as funding becomes available.

7.4 INDICATORS TO MEASURE PROGRESS

Criteria for determining the success of management measures in improving watershed conditions must be established. The criteria for success must include specific reduction goals for water-quality impairments. Establishing goals for load reductions also allows an adaptive management approach to reevaluate management measures and implementation plans if they fail to meet goals.

7.5 ESTIMATION OF COSTS AND TECHNICAL ASSISTANCE NEEDED

The costs to implement the proposed management measures and to monitor the results will be substantial, with at least over 20 years being required to fully implement the WMP as presented; estimated costs are listed in the tables below. The implementation of this WMP will require the assistance of numerous government agencies, non-profit entities, and private organizations. In particular, technical guidance from the ADEM, along with the municipalities and county agencies will be required. The following **Table 7.2** is a summary of proposed actions for overall planning and assessment of the watershed. **Table 7.3** is a summary of the proposed educational outreach strategies and connectivity and visibility strategies. **Table 7.4** is a summary of potential site-specific BMP's that were identified during the public involvement process that address the overall planning and assessment actions in order to improve water quality within the Shades Creek watershed.

Table 7.2 – Proposed Overall Watershed Planning and Assessment Actions

			OV	ERALL WATER	SHED PLANNING AND ASSESSMENT
ACTION	FUNDING SOURCES	NUMBER OF UNITS	ESTIMATED COST PER	ESTIMATED TOTAL COST	BRIEF DESCRIPTION
Develop a Hydrologic Model for the Shades Creek Watershed Complex	General Funds Grants Private Funds	1	\$150K	\$150K	 Detailed impervious surface analysis throughout watershed. Identify priority sub-watersheds experiencing flows that exceed the capacity of the infrastructure and natural systems. Identify sub watersheds that need to regulate post construction peak flows to LESS than pre- construction post flows in order to address capacity issues. Identify opportunities for installation of green infrastructure (i.e., infiltration of stormwater runoff).
Implementation of a Pollutant Source Tracking Program	319 Funds General Funds Grants	~25	\$50K/year	\$1.25M	 Include simultaneous measurements of flow, nutrient, sediment & bacteria at primary tributaries This program should also include microbial source tracking to identify animal sources (e.g., human, dogs, cattle, etc.) of any observed bacterial violations. Assessment of sediment loadings specific to primary tributary flows to identify source of input.
Long Term Trend Water Quality Monitoring Program	Grants	set. Cost a	Cost of existing monitoring programs is set. Cost associated with monitoring for data gaps will vary.		 Address nutrients, fecal bacteria, sediment and flow Establishment of additional monitoring locations in the Lower Shades Creek and Cooley/Mud Creek watershed Consistent parametric coverage at existing stations to support long-term tracking of status and trends and regulatory compliance.
Implementation of sampling locations for anthropogenic sources (pesticides, herbicides, petroleum, oil, & grease)	General Funds Grants Private Funds	~25	10K/Year	\$250K	 Primarily caused due to stormwater runoff from agriculture, lawn and gardens, parking lots, and roads Monitoring parameters would indicate the success, or lack thereof, the management measures in limiting unfiltered urban runoff into surface drainages.
Biological and Habitat analysis in each sub-watershed	General Funds Grants Private Funds	1	150K		 Assessment of the flora, fauna, and protected species and invasive species specific to the Watershed. Stream assessment for the main channels and tributaries to determine issues with stream erosion/sedimentation
Septic System GIS Inventory and Visual Inspection	General Funds Grants Private Funds	1	\$75K	\$75K	 Identify, inspect and map priority septic systems primarily within the Lower Hades Creek and Cooley- Mud Creek sub-watersheds Information to be maintained and updated by project partners in coordination with the Jefferson County Department of Health.
Implement Septic System Retrofit Program *Locations to be Determined based on Assessments	319 Funds Grants Private Funding	15	\$5K/each	\$750K	 Based on Septic system GIS inventory, identify 15 failing septic systems within priority areas of Shades Creek Inspect and retrofit/repair/pump the failing septic systems Following repairs to the system, review monitoring data to investigate the extent that failing septic systems contribute to the fecal coliform levels in Shades Creek Conduct a public outreach campaign to support the septic management strategy.

Table 7.2 (Continued) – Proposed Overall Watershed Planning and Assessment Actions

			OVE	RALL WATERS	HED PLANNING AND ASSESSMENT
ACTION	FUNDING SOURCES		ESTIMATED COST PER UNIT		BRIEF DESCRIPTION
GIS Inventory of Storm Water Infrastructure in Upper Shades Creek sub watershed	Grants	1	\$250K	\$250K	 Collection of existing storm water infrastructure data within the watershed Field collection of storm water infrastructure data within the municipalities located in Upper Shades Creek Host GIS data for use by municipalities within the watershed Engineering analysis to identify issues related to storm water infrastructure (damaged structures, undersized drainage features, etc.) Develop conceptual solutions and estimated costs for repairing identified infrastructure issues
Preparation of Stormwater Master Plan for Communities within Watershed	General Funds Grants Private Funding	N/A	TBD	TBD	 GIS inventory of infrastructure and condition assessment Conduct training for municipal staff Develop capital improvement plan for SW prioritization Review and update ordinances to support plan
Implement Infrastructure Repair Program *Locations to be Determined based on Assessments	319 Funds Grants Private Funding General Funds	10	\$25K-100K	\$250K-\$1M	 Based on Storm water infrastructure inventory, identify top 10 infrastructure issues contributing to degraded water quality Complete engineering design for retrofit/repair of infrastructure issue. Implement repair of issue/s Update GIS database to reflect repair
Implement Invasive Species Management Program	General Funds Grants 319 Funds Private Funds	1	TBD	TBD	 Conduct watershed assessment and identify invasive species within stream riparian buffers Prioritize areas that need invasive species removal based on size, location, and density Initiate restoration of the identified areas.
Green Stormwater Infrastructure (GSI) and Soil Suitability Assessment	General Funds Grants Private Funds	1	75K	75K	 Utilize the preliminary soil series, available GIS information, and exiting mapping services to identify stormwater hotspots and potential GSI projects. Conduct field assessments to further determine feasibility of potential GSI and develop cost estimates for implementation. Produce conceptual plans and cost estimates for implementation of the potential GSI projects. Prioritize potential GSI projects based on water quality impact, property ownership, costs, etc.
Implementation of Green Stormwater Infrastructure (GSI) Projects *Locations to be Determined based on Assessments	Grants 319 Funds Private Funding	10	TBD	TBD	 Conduct final engineering and analysis Secure regulatory approvals and select contractor Implement GSI project

				EDUCATIONAL OUT	REACH STR	ATEGIES		
ACTION TARGET AUDIENCE			CE D	ESCRIPTION AND/OR STRAT LOCATIONS	EGIC	FUNDING	RESPONSIBLE PARTY / ORGANIZER	
			A	nnual Fall Shades Creek Clea	anup	Volunteer		
Promotion of Public Eve	nts	General Publi		Annual Salamander Festiva	al	Private Fundraising	Friends of Shades Creek	
Educational Materials ar Resources	Naterials and Electronic General Pub			es Creek WMP Availability an Updating	d Annual	Private Fundraising Grants (\$5K / Annually)	The Nature Conservancy of Alabama Community Groups	
nesources				c Education and Outreach Pr dination with Municipal MS4 Requirements	U	Private Funding General Funds Grants	Friends of Shades Creek Local Community Groups Municipalities	
				CONNECTIVITY AND		TRATEGIES		
ACTION	POTENTIAL LOCAT		ENTIAL	ESTIMATED IMPLEMENTATION COST	BRIEF DESCRIPTION			
Greenway Connectivity	Brookwood	Mall	e Funding rants	\$250,000	Currently, the Brookwood Mall represents a gap within a Greenway System along Creek. Homewood Greenway is located downstream of the mall and Jemison Trail located upstream of the mall. Connecting the 2 trail systems by incorporating a tra Brookwood Mall would increase access and visibility to Shades Creek.			
Increase Visibility	Headwaters Shades Cree	Private Fund		inding TBD		Identify potential locations for access and increased visibility for the springs at the headwaters of Shades Creek (i.e., racetrack, New Life Church, etc.). Once potential locations have been identified, conduct assessment and conceptual planning for providir access and increasing visibility. Secure funding and implement design plan.		

Table 7.4 – Proposed Site Specific BMPs for Identified Issues

	SITE SPECIFIC BMP'S FROM PUBLIC INPUT & POTENTIAL PROJECTS FOR ABOVE ACTIONS								
IDENTIFIED ISSUE	ACTION	RESPONSIBLE ENTITIES	POTENTIAL FUNDING SOURCES	ESTIMATED IMPLEMENTATION COST	BRIEF DESCRIPTION				
	Active Participation of Governmental Bodies in the National Flood Insurance Program (NFIP) and Community Rating System (CRS)	- Jefferson County - Homewood - Birmingham - Mountain Brook - Irondale - Hoover - Vestavia Hills - Bessemer	General Funds	-	 Participation in NFIP allows communities to regulate floodplain development. In return for regulating floodplains, the citizens of the community receive federally subsidized flood insurance. Under CRS, communities participating in the NFIP can be rewarded for exceeding minimum national standards. The CRS program recognizes and awards credits for floodplain management activities in four (4) categories: public information, mapping and regulations, flood damage reduction, and warning and response. The more points a community receives for exceedance of the national flood standards, results in reduced flood insurance premiums of that community's residents and businesses. This ensures communities are better prepared to withstand and recover from future flooding events. 				
Flooding	Plan for Public Information	NFIP and CRS Participants	Grants General Funds	\$125K	1) A Program for Public Information (PPI) is a committee-based localized approach to community outreach and education on flood hazards and flood insurance. The goal of a PPI is to encourage community outreach that is designed to meet local needs and to develop a program that is monitored, evaluated, and revised to improve effectiveness. Once implemented a PPI can be a powerful tool to organize community engagement and ensure that activities are effective and streamlined.				
		NFIP and CRS Participants	Grants General Funds	\$50K –\$100K	 This plan is designed to aid in the understanding of floodplain natural resources and functions and to examine strategies and tools to protect, preserve and/or restore these resources. Natural Floodplain Functions include natural or relatively undisturbed floodplain that moderate flooding, retain flood waters, reduce erosion and sedimentation, maintain water quality, recharge of groundwater, and protection of fish and wildlife habitat. 				
	Flood Hazard Mitigation Plan	NFIP and CRS Participants	Grants General Funds	\$75K - \$150K	 This plan is intended to assess current flood hazard conditions, including historically flooded areas and the most critical repetitively flooded properties, and to develop appropriate mitigation strategies for the local government to consider in reducing or eliminating future flood losses. 				

Table 7.4 (Continued) – Proposed Site Specific BMPs for Identified Issues

	SITE SPECIFIC BMP'S FROM PUBLIC INPUT & POTENTIAL PROJECTS FOR ABOVE ACTIONS								
IDENTIFIED ISSUE	BMP	EXAMPLE / POTENTIAL PROJECT LOCATIONS	APPROXIMATE LATITUDE/LONGITUDE	POTENTIAL FUNDING SOURCES	ESTIMATED IMPLEMENTATION COST	ESTIMATED MAINTENANCE COSTS	BRIEF DESCRIPTION		
Litter Accumulation	Litter Control Traps	 Flora Johnston Park (Irondale) Cross Creek (Irondale) Homewood Jr. High (Homewood) Lakeshore Walmart (Homewood) Watkins Brook (Mountain Brook) 	· · · · · · · · · · · · · · · · · · ·	Grants General Funds 319 Funds Private Fundraising	\$125К (5 Traps Year 1)	\$120K Annually (5 Traps Years 2+)	 Identify five (5) strategic locations along tributaries to Shades Creek Install litter traps at strategic locations Long-term cleaning and maintenance of traps 		
General Erosion and Sedimentation	Streambank	 Flora Johnston Park (Irondale) Cross Creek (Irondale) Overbrook Road (Mtn. Brook) Jemison Park (Mountain Brook) Brookwood Mall (Homewood) Brookside Pass (Hoover) 	33.524472°, -86.711545° 33.515207°, -86.715044° 33.490235°, -86.748505° 33.482331°, -86.756892° 33.470900°, -86.770204° 33.358751°, -86.880207°	General Funds 319 Funds Private Fundraising	TBD	TBD	 Conduct streambank rest. feasibility study. Develop streambank restoration design plan and acquire appropriate permitting. Implementation of streambank rest. design. Long-term monitoring to determine success of project. 		
Invasive Species and Lack of Riparian Buffers	Species	-Dickey Springs Road (Bessemer) -Brookwood Mall (Homewood and Mountain Brook) -Shades Creek at Pocahontas Rd (Bessemer) -Jemison Park (Mountain Brook)	33.323591°, -86.950231° 33.470900°, -86.770204° 33.295052°, -86.983313° 33.482331°, -86.756892°	Grants General Funds 319 Funds Private Fundraising	\$20K – 100K (Per Site)	TBD	 Conduct riparian buffer enhancement feasibility study. Develop plan and acquire permitting. Implementation of invasive species control and buffer enhancement. Long-term maintenance 		
Stormwater Infrastructure	Green Stormwater Infrastructure Design/Retrofit	 Brookwood Mall (Homewood/Mtn. Brook) Lakeshore Walmart (Homewood) Grants Mill Station Parking Lot (Irondale) Sam's Parking Lot (Irondale) ROW Interchange (I-20/Kilgore Memorial Dr.) 	33.470900°, -86.770204° 33.448710°, -86.820505° 33.530651°, -86.694309° 33.533105°, -86.692794° 33.534099°, -86.698090°	Grants General Funds 319 Funds Private Fundraising	TBD	TBD	 Conduct suitability assessment (see Table 7.1) Produce conceptual plan Conduct full design and obtain permitting Implementation of Green Stormwater Infrastructure Plan 		
Septic Leaks and Sewer Overflows		 Elder Street Overbrook Road downstream of Mountain Brook Country Club Homewood Central Park (fecal coliform) 	33.520895°, -86.716890° 33.490235°, -86.748505° 33.475848°, -86.797986°	Grants General Funds 319 Funds Private Fundraising	TBD	TBD	 Conduct septic inventory to identify failing systems (see Table 7.1) Inspect and retrofit/repair/pump the failing septic systems. Repair stormwater system failures Following repairs to the system, review monitoring data to investigate the extent that failing septic systems contribute to the fecal coliform levels in Shades Creek Conduct a public outreach campaign to support the septic management strategy. 		

7.6 EDUCATION PROGRAM

Management of any natural resource is enhanced by understanding, support, and participation of the stakeholders. Successful implementation of the recommended management measures may not be possible without public education and outreach, which is one of the EPA's nine (9) key elements for watershed planning. A consistent and targeted education and outreach program will raise public awareness and support for the recommended management measures necessary to protect and improve the health of the Shades Creek Watershed. The outreach program should include scheduled presentations to schools, civic organizations, municipal leadership, and other organizations as necessary. Informational signage at public access points should encourage the public to help preserve and protect the Shades Creek through good stewardship. Trash containers and dumpsters with appropriate signage should be located and maintained at public access points and other strategic locations as a reminder to keep the Shades Creek Watershed clean and free of trash.

The following goals have been identified for the public education and outreach plan:

- Inform, educate, and engage key stakeholders in an effort to increase the public's awareness of both the benefits provided by the Shades Creek Watershed and the problems impacting its Watershed.
- Engage private property owners to identify needs and interests along with their input on collaboration needs associated with the public for access, erosion, and habitats concerns.
- Explore additional opportunities to engage the public in the restoration and protection of the Shades Creek Watershed.
- Provide ways for the public to contribute to the restoration process, such as offering ideas for improving and preserving the Watershed.
- Educate community members so they increasingly value natural resources and recognize the importance of preserving and protecting the resource.
- Explore opportunities to engage the public in the restoration and protection of the Shades Creek Watershed.

Targeted Audiences

Specific community stakeholders must become leaders in the WMP implementation process. These targeted audiences and the ways the WMP address the values important to each of those stakeholders are identified in this section. The stakeholder groups have the ability to make changes through regulation or policy, participation in restoration activities, management of stormwater runoff, or communication of the Shades Creek WMP goals and objectives.

Local Government Officials

Local elected officials and their staffs are responsible for establishing priorities for local programs, developing policies, and setting annual budgets. These roles can influence the successful implementation of the Shades Creek WMP. This stakeholder group should be informed of the opportunity presented by the WMP to unify the public with the concept of protecting Shades Creek with local engagement. Jefferson County and all of the municipalities within the Shades Creek Watershed currently operate under their respective National Pollutant Discharge Elimination System (NPDES) municipal seprate stormwater system (MS4) permit. Public education and outreach is already a requirement of the permit. Examples of public outreach that meet this permit requirement include the following:

- Posting signage in public parks reminding dog owners to pick up after their pets
- Distributing brochures to the community highlighting stormwater issues in the community
- Providing public schools with stormwater related educational materials or conducting presentations at schools
- Developing display materials to showcase at local events
- Developing public service announcements for mass media outlets
- Purchasing or producing give away materials that educate the public on stormwater issues (magnets, bookmarks, pens, etc.)
- Painting, stenciling, or marking storm drains to alert citizens not to dump materials into the system
- Running a poster or essay contest to encourage citizens to consider clean water issues.

Considering that MS4 permit holders are already required to incorporate a public education and outreach program, it is a perfect opportunity to incorporate elements of this WMP in support of the MS4 permit. Any public outreach and education for the Shades Creek WMP can be utilized as documetation for the MS4 permit. Local government officials also have a role in providing access to the historic and productive waterway. In addition, the WMP provides useful information needed to make decisions about both recreational access and economic development while ensuring protection of environmental resources.

Local government officials can vote to support the Shades Creek WMP, develop and implement WMP recommendations, and encourage stricter enforcement of regulations related to litter and stormwater management. Local officials should be encouraged to work with state and federal agencies to facilitate WMP projects. They can also promote a sense of watershed community through community-wide activities such as trash collection and tree planting events.

Private Industry

Success is closely tied to financial support. Support from an active and diverse group of private stakeholders is needed to attract and match sources of federal, state, and local funding. Major institutions within the Watershed should be motivated to support the WMP, as all businesses within the watershed will benefit from its restoration. Local residents will enjoy improved surroundings, a better living environment, and increased satisfaction and pride in their community. Businesses can enhance their public image by demonstrating their support for preservation and restoration of a local resource. The WMP recommends engagement opportunities for private industry in the implementation of projects to support the surrounding community, local workforce, and economy while promoting their company image and fostering goodwill. Private industry can also seize opportunities to become involved in recommended projects such as installing stormwater retention ponds for their facilities or funding components of other projects and programs throughout the Watershed. Sponsors can be highlighted on signage or plaques.

<u>Academia</u>

Local schools and higher education institutions have an opportunity to inform students about issues in their community. Teachers and instructors can introduce students to the WMP goals and objectives. The extensive scientific and technical data presented in the WMP regarding the current status of the Shades Creek Watershed and measures to improve conditions can be utilized as educational tools for all levels of curriculum. The WMP also identifies research opportunities for academic field work benefiting local resources.

Local Resource Managers

Local resource managers provide services related to water supply and wastewater treatment to the Shades Creek Watershed residents and can assist in guiding water quality management within the Watershed. The actions recommended in this WMP will improve water quality of the Shades Creek Watershed by reducing stormwater pollutants and trash in waterways and increasing public understanding of human impacts on water resources. Local resource managers can help by getting involved in the Shades Creek preservation and restoration efforts, assisting with outreach and communication, and sponsoring community events.

<u>Media</u>

Newspapers, television news programs, on-line news sources, social media (Twitter, Facebook, Instagram, etc.), and radio stations are significant sources of information for the public. The WMP sets the stage for a better future for the Shades Creek Watershed and a vision, supported by the public, to preserve the area and provide community-wide access to a beautiful natural resource. Local media can help by publishing stories highlighting the WMP and its recommendations, creating news stories describing accomplishments of the WMP, advertising cleanup or anti-littering events and campaigns, and sharing stories about the involvement of local leaders in the WMP.

Community Organizations and Leaders

Community leaders have a vital role in implementing the WMP and its goals. They should be advocates of the WMP and encourage elected officials to prioritize the WMP recommendations. They should participate in education and outreach, litter reduction campaigns, and share restoration ideas. Community leaders should understand that the WMP represents a community-wide approach for protecting water quality, habitats, and living resources of the Shades Creek Watershed through the goals of improving recreational opportunities, beautifying the area, and highlighting historical and cultural aspects of the Watershed. Community leaders can host events, promote recreational and outreach activities, create and launch neighborhood anti-littering campaigns, and educate residents on the benefits of preservation and restoration to their properties. Many leaders and stakeholders have been identified through the process of developing the WMP, and some are already involved. While TNC has led the effort to initiate the work, future efforts and project implementation must be rooted within the community of stakeholders.

The mission of TNC is to "conserve the lands and waters on which all life depends" and TNC vision is a "world where the diversity of life thrives, and people act to conserve nature for its own sake and it ability to fulfill our needs and enrich our lives." To support its mission and vision, TNC chooses to promote watershed planning and the development of this WMP. TNC recognizes the critical importance of preserving and improving the health of the Shades Creek system. TNC and the other community organizations listed as stakeholders will continue to work with local governmental officials and regulatory agencies to help advocate for the implementation of the WMP recommendations. These community organizations will continue to provide opportunities for public involvement and membership, organize the training of volunteer coordinators for a wide variety of environmental topics, host meetings with community groups and neighborhood associations to equip them with the knowledge and materials for promoting the WMP goals and objectives, and collaborate with citizen groups to promote stewardship efforts in preserving and restoring the Shades Creek Watershed.

7.7 LOCAL PROGRAMS

Local programs for citizens are an important part of the WMP implementation strategy to create interest and encourage participation by watershed residents. The following are examples of local programs that can be beneficial to the health of the watershed.

Voluntary Monitoring

An important part of the WMP implementation strategy is to create interest and encourage participation by watershed residents. One way to achieve this is to create a local volunteer monitoring program. Community organizations, such as the Cahaba Riverkeepers, are already conducting water quality monitoring and distributing the results through social media. The Alabama Water Watch (AWW) is another outstanding example of this type of program. It is a citizen-volunteer water quality monitoring program that has data collection stations located in all of the major river basins in Alabama. The goals of the Shades Creek volunteer monitoring program are to:

- Educate residents on water quality issues and create interest in the health of the Watershed;
- Train citizens to use standardized equipment and techniques to gather water quality information correctly;
- Enable citizens to maintain and improve the health of the Watershed by using their data for environmental education, restoration, protection, and stewardship; and
- Create a database of water quality data that can be used to help evaluate the effectiveness of management measures.

Volunteer monitoring locations should initially include all the data collection stations listed in Chapter 4. The volunteer monitoring program is primarily intended to collect field parameters as an ongoing reconnaissance to screen water quality for potential problems. Identified issues could then be more thoroughly investigated through in-depth sampling and analyses under the formal monitoring program addressed in **Chapter 4** and monitoring locations for future sampling.

Community Rating System

The National Flood Insurance Program (NFIP) provides federally backed flood insurance within communities that enact and enforce floodplain regulations. To be covered by a flood insurance policy (for the structure and/or its contents), a property must be in a community that participates in the NFIP. To qualify for participation in the NFIP, the governmental entity must adopt and enforce a floodplain management ordinance to regulate development in flood hazard areas. The main objective of the flood ordinance is to minimize the potential for flood damage on future development, thus protecting people and property in the community.

The NFIP established the Community Rating System (CRS) program to provide incentives for communities that exceed minimum requirements with their floodplain management programs. The CRS program aims to achieve three major goals: 1) to reduce damage to insurable property, 2) to strengthen and support the insurance aspects of the NFIP, and 3) to encourage a comprehensive approach to floodplain management. The CRS program recognizes and awards credits for floodplain management activities that go above and beyond the minimum requirements in these four main categories: public information, mapping and regulations, flood damage reduction, and warning / response. The more points a community receives, the better the discount property owners within that community receive on their flood insurance

policies. Participation in CRS can reduce insurance premiums for policy holders by as much as 45%. Additionally, implementation of CRS activities can give participating communities a competitive edge with other Federal assistance programs.

Communities within the watershed that are currently in the CRS program are the Cities of Hoover, Homewood, and Birmingham. With flooding being identified as an issues within the watershed, this program could be invaluable for governmental stakeholders within the watershed. Not only does this program contribute to the health of the watershed, but it also provides a financial incentive for businesses and citizens within each community. Communities currently not participating in this program should be encouraged to take the appropriate steps to become eligible. Participating communities should continue to work on implementing floodto receive credit and reduced insurance premiums for its citizens.

Alabama Smart Yards

The Alabama Smart Yards (ASY) program is a cooperative alliance by the Alabama Cooperative Extension System, ADEM, Alabama Nursery and Landscape Association, Alabama Master Gardeners Association, and Auburn University's Department of Horticulture (ACES, 2016a). Its mission is to introduce environmental consciousness to homeowners and neighborhoods. The ASY provides an extensive handbook that contains a host of information including recycling lawn waste, reducing stormwater runoff, managing yard pests responsibly, efficient irrigation practices, etc. The program also includes a "Smart Yards" application for mobile telephones that serves as a pocket guide for environmentally responsible yard maintenance.

7.8 EVALUATION FRAMEWORK

The evaluation framework for this WMP, its implementation, and its success can be divided into three (3) primary areas: inputs, outputs, and outcomes. Inputs include human resources of time and technical expertise, organizational structure, management, and stakeholder participation. Outputs include implementation of management measures, public outreach and education, and the monitoring program. Outcomes include increased public awareness, improved watershed conditions, and improved water quality. An effective evaluation framework allows the WMP and implementation strategy to be modified as necessary to maximize efficiency and achieve stated goals. The evaluation framework for the Shades Creek Watershed should focus on answering these questions during the indicated time frames. If the answer to any of these questions is negative, the implementation strategy should be reevaluated and revised.

Short-Term Milestone Period (0 – 2 years)

- Have necessary funding for implementation been quantified, sources identified, and any received?
- Has the Public Education and Outreach Program been organized and implemented?
- Has the Monitoring Program been updated/implemented and a qualified entity identified to carry out the program?
- Have any planning/assessment actions been completed (hydrologic model, biological assessment, septic inventory, SW infrastructure inventory, GSI inventory, etc.)?
- Has the Pollutant Source Tracking Program been implemented?

Mid-Term Milestone Period (2 – 5 years)

- Has the Monitoring Program been successfully implemented?
- Has the Invasive Species Management Program been initiated?
- Have any management measures been implemented (septic retrofits, SW infrastructure repair, litter traps, streambank restoration, etc.)?
- Have any Green Infrastructure projects been funded and completed?
- Did the level of public interest and participation rise to the level of helping to achieve the WMP goals?
- Has additional funding been identified and secured?

Long-Term Milestone Period (5 - 10 years)

- Have specific projects and management measures proposed in the WMP been fully implemented and completed?
- Have there been reductions in the sediment, nutrient, and fecal loading rates?
- Have water quality conditions improved?
- Have water quality improvements and loading rate reductions met stated goals?

7.9 NEW DATA RECOMMENDATIONS

The compilation of information during the development of this WMP has led to the identification of significant gaps in the data acquired, which should guide future research and data collection relevant to the goals of the WMP. In addition, the temporal, spatial, and parametric coverage of ambient surface water quality data from Shades Creek have varied substantially, as very few stations have been monitored consistently since 1991 to present. Although sufficient historic and recent data exist to adequately determine the general status and rends in surface water, it is important to continually monitor in order to capture changes in water quality.

Recommendations for water quality monitoring are presented in Chapter 4. Informational gaps that are addressed in these recommendations include the following:

- Establishment of long-term trend water quality monitoring program which should address nutrients, fecal bacteria, sediment, and flow. Needed activities include establishment of additional monitoring locations in the Lower Shades Creek and Colley-Mud Creek sub-watersheds, and consistent parametric coverage and existing stations to support longterm tracking of status, trends, and regulatory compliance.
- Consideration for implementation of sampling locations for anthropogenic sources (pesticides / herbicides / petroleum/ oil / grease). These sources are primarily caused due to stormwater runoff from agriculture, lawn and gardens, parking lots, and roads. Monitoring parameters would indicate the success, or lack thereof, the management measures in limiting unfiltered urban runoff into surface drainages.
- Implementation of a pollutant source tracking program to include simultaneous measurements of flow, nutrients, sediment and bacteria at primary tributary inflows. This program should include microbial source tracking to identify animal sources (e.g. human, dogs, cattle, etc.) of any observed bacterial observations. Assessment of sediment loadings specific to the primary tributary flows in order to identify the source of input.

- Biological and habitat evaluations should be conducted in each sub-watershed and include the assessment of flora, fauna, and protected and invasive species specific to the watershed. Stream assessment should also be conducted for the main channel and major tributaries.
- Develop a hydrological model for the Shades Creek watershed including 1) a detailed impervious surface analysis throughout the watershed, 2) identify priority sub-watersheds that are experiencing flows that exceed the capacity of the infrastructure and natural systems, 3) identify sub-watersheds that need to regulate post-construction peak flows to less than pre-construction flows in order to address capacity, and 4) identify opportunities for the installation of green infrastructure (e.g. infiltration of stormwater runoff).

7.10 INITITAL IMPEMENTATION OF MANAGEMENT MEASURES

Implementation of recommended management measures should begin immediately following the approval of the Shades Creek WMP. Initial implementation should focus on the most critical issues and the prioritized management measures identified in this WMP. Below is a summary of priority management measures that are recommended for implementation.

1. Develop a long-term trend water quality monitoring program

A water quality monitoring and sampling plan is necessary to continue to document the overall health of the Shades Creek Watershed, track the success or failure of the implemented management measures, and determine where additional measures are necessary. The monitoring plan should encompass the greatest possible portion of each watershed with the least number of samples necessary, while providing sufficient detail to identify probable sources for impairments of concern. As part of the water quality monitoring and sampling program, it is recommended to implement a pollutant source tracking program to determine the sources of pollutant input. Incorporating collection of data for anthropogenic sources (pesticides, herbicides, petroleum, oil, & grease) should be considered as part of this monitoring plan.

2. Develop a Hydrologic Model for the Shades Creek Watershed Complex

A hydrological model of the watershed will provide a detailed analysis of impervious surfaces and identify subwatersheds that are experiencing flows that exceed the capacity of the infrastructure and natural systems. This model could also identify sub-watersheds that need to regulate post-construction peak flows and identify opportunities for the installation of green infrastructure (e.g. infiltration of stormwater runoff).

3. Conduct a biological and habitat analysis in each sub-watershed

Initiate potential habitat enhancement projects that are intentionally large and aimed at current federal funding opportunities to restore and protect critical habitats. These projects should target stabilization of stream channels, wetlands, and riaprian buffers to reduce erosion/sedimentaiton and enhance aquatic habitat. Identify projects for restoration and conservation of priority habitats. Prepare a flora inventory plan as well as an invasive species (flora and fauna) control plan specific to the watershed to ensure vital areas are protected and maintained.

4. Conduct GIS inventory for septic systems and stormwater infrastructure

A GIS inventory of existing septic systems (primarily in the Lower Shades Creek and Cooley-Mud Creek sub-watersheds) and existing stormwater infrastructure (primarily in the Upper Shades Creek sub-watershed) would provide the necessary information for making improvements to these systems. System failures could be identified and prioritized for the necessary repairs to enhance water quality in the watershed. In addition, a GIS Green Infrastructure (GI) and soil suitability assessment could be incorporated into this analysis to determine feasibility of potential GSI projects and develop cost estimates for implementation.

5. Establish a public outreach and education program

The outreach program should include scheduled presentations to schools, civic organizations, municipal leadership, and other organizations as necessary. Informational signage at public access points should encourage the public to help preserve and protect the Shades Creek through good stewardship. Trash containers and dumpsters with appropriate signage should be located and maintained at public access points and other strategic locations as a reminder to keep the Shades Creek Watershed clean and free of trash. The watershed outreach program could be incorprated into the existing public outreach requirements for the NPDES MS4 permits held by many of the communities within the Shades Creek watershed.

6. Implement specific stormwater best management practices

Implement litter control measures as necessary, reduce nutrient loads (implement improvements to reduce failing septic tanks and stormwater infrastruture), condcut streambank and wetland restoration, conduct invasive species control and riparian buffer restoration, and encourage low impact development and green stormwater infrastructure (bioretention, constructed wetlands, retrofits, etc.). Specific potential sites for best management practices are listed in **Table 7.1** and additional specific project could be identified through the recommended assessments listed above.

As part of the development of this Watershed Management Plan (WMP) for the Shades Creek Watershed in Jefferson County, Alabama, a review of existing regulations at the Federal, State, and local levels was conducted. The geopolitical boundaries of the Shades Creek Watershed include overlapping jurisdictions and adjacent portions of Jefferson, Shelby, Bibb, and Tuscaloosa Counties, the Cities of Bessemer, Birmingham, Homewood, and Hoover, Irondale, Mountain Brook, and Vestavia Hills. Past and current status of developments, ordinances, inspections, and compliance issues were discussed with local government officials, as well as with representatives of Alabama Department of Environmental Management (ADEM), U.S. Army Corps of Engineers (USACE), and the WMP Steering Committee.

The laws, regulations, and ordinances reviewed in this WMP focus on water quality, stormwater, erosion and sediment control, wetlands, other "waters of the U.S.," and land disturbances. The list includes:

- Clean Water Act, 33 USC § 1251, et seq.
- Alabama Water Pollution Control Act, Ala. Code § 22-22-1, et seq.
- ADEM Admin Code Reg. 335-6-6 National Pollutant Discharge Elimination System (NPDES)
- 335-6-6 and 335-6-10 (NPDEA and Water quality criteria)
- City of Bessemer Stormwater Management Ordinance
- Birmingham City Code Chapter 17: Storm Water Management and Flood Control
- City of Birmingham Stormwater Management Program Plan
- City of Homewood Erosion and Sediment Control and Stormwater Management Ordinance
- City of Hoover Erosion and Sediment Control and Illicit Discharge Ordinance
- City of Irondale Stormwater Management Ordinance
- City of Mountain Brook Stormwater Management, Erosion and Sediment Control, and Subdivision Ordinance
- City of Vestavia Erosion and Sedimentation Control Ordinance
- Jefferson County Flood Damage Prevention Ordinance
- Shelby County Stormwater Management Plan and SSO Response and Reporting Program
- Tuscaloosa County Floodplain Management Ordinance

Federal, State, and local regulations are regularly reviewed and updated. Regulation changes are constantly being planned; however, permits typically required for activities within the Watershed are regularly updated (typically every five years) and usually include some changes from the previously issued permits. Below is a summary of the current expiration dates for the federal, state, and local permits required for certain activities within the Watershed:

- USACE Nationwide Permits March 18, 2022
- ADEM Construction Stormwater General Permit March 31, 2026
- City of Bessemer Municipal Separate Storm Sewer System (MS4) Individual Permit November 30, 2022
- City of Birmingham Municipal Separate Storm Sewer System (MS4) Individual Permit February 28, 2023

- City of Homewood Municipal Separate Storm Sewer System (MS4) Individual Permit June 30, 2022
- City of Hoover Municipal Separate Storm Sewer System (MS4) Individual Permit January 31, 2023
- City of Irondale Municipal Separate Storm Sewer System (MS4) Individual Permit June 30, 2022
- City of Mountain Brook Municipal Separate Storm Sewer System (MS4) Individual Permit June 30, 2022
- City of Vestavia Hills Municipal Separate Storm Sewer System (MS4) Individual Permit June 30, 2022
- Jefferson County Phase I MS4 General Permit September 30, 2023
- Shelby County NPDES Permit September 30, 2025
- Tuscaloosa County Phase II MS4 General Permit September 30, 2021

8.1 **REGULATORY FRAMEWORK**

In May 1991, the State of Alabama Legislature passed a law (Act No. 91-602) that provides for the creation of watershed management authorities in the state, with the expressed purpose of "developing and executing plans and programs relating to any phase of conservation of water, water usage, flood prevention, flood control, water pollution control, wildlife habitat protection, agricultural and timberland protection, erosion prevention, and control of erosion, floodwater and sediment damages" (AL Code§ 9-10A-1, 2013).

This body is non-regulatory; however, the law provides numerous powers and authorities to the Board of Directors of a watershed management authority, including the power to:

- Acquire lands or rights-of-way by purchase, gift, grant, bequest, or through condemnation proceedings;
- Construct, improve, operate, and maintain such structures and projects as may be necessary for the exercise of any authorized function of the Authority;
- Borrow money as is necessary for the performance of its functions;
- Make and execute contracts and other instruments necessary to the exercise of its powers;
- Act as agent for the State of Alabama or any of its agencies, the United States or any of its agencies, or any county or municipality in connection with the acquisition, construction, operation, or administration of any project within the boundaries of the Authority;
- Issue, negotiate, and sell bonds upon approval of the State Finance Director; and
- Accept money, services, or materials from national, state, or local governments.

8.1.1 Federal Authorities

Federal Water Pollution Control Act

The Federal Water Pollution Control Act was enacted in 1948, and was significantly reorganized and expanded in 1977. The Clean Water Act (CWA) became the Act's common name with the amendments in 1972. The CWA establishes the basic structure for regulating discharges of pollutants into the waters of the United States and regulating water quality standards for surface waters. The CWA and its amendments provide the basis for the primary federal regulatory and permitting procedures relating to stormwater management in the Shades Creek

Watershed. The most applicable sections of the CWA related to controlling stormwater runoff and erosion and sedimentation within the Watershed are listed below.

<u>CWA § 404</u>

This section establishes a program to regulate the discharge of dredged or fill material into waters of the United States, including wetlands. CWA Section 404 requires a permit before dredged or fill material may be discharged into waters of the United States, unless the activity is exempt from Section 404 regulation (e.g., certain farming and forestry activities). The USACE is the primary permitting authority for impacts to waters of the United States, including wetlands. Permit applications are reviewed and evaluated based on the environmental criteria set forth in the CWA Section 404(b)(1) guidelines and regulations promulgated by the U.S. Environmental Protection Agency (EPA). The permits must also meet State water quality standards and coastal area requirements and must be consistent with each program.

<u>CWA § 402</u>

This section authorizes permitting under the NPDES program with EPA having primary permitting authority. The NPDES program requires dischargers to obtain permits prior to discharging pollutants into waters of the United States. The NPDES program covers point source discharges from industrial facilities; MS4s; concentrated animal feeding operations (CAFO); publicly-owned treatment works (POTW); combined sewer overflows (CSO) and sanitary sewer overflows (SSO); and construction, non-coal/non-metallic mining and dry processing less than five acres, other land disturbance activities, and areas associated with these activities.

Through delegation from the EPA, ADEM has the authority to administer the NPDES program. Through ADEM Admin. Code Reg. 335-6-6 the Department regulates and permits certain point source discharges. Through ADEM Admin Code Reg. 335-6-6, ADEM regulates discharges from construction, non-coal/non-metallic mining and dry processing less than five acres, other land disturbance activities, and areas associated with these activities. This regulation also imposes requirements for controlling erosion, sedimentation, and other potential sources of pollution from these activities through the use of best management practices. This regulation also outlines requirements for inspections, reporting, and enforcement actions.

The EPA promulgated the Effluent Limitations Guidelines and Standards for the Construction and Development Point Source Category in December 2009. The rule requires owners and operators of permitted construction activities to adopt certain requirements including the implementation of erosion and sediment controls, stabilization of soils, management of dewatering activities, implementation of pollution prevention measures, provision and maintenance of a buffer around surface waters, prohibition of certain discharges, and utilization of surface outlets for discharges from basins and impoundments. The 2009 rule also included the establishment of numeric limitations on the allowable level of turbidity in discharges from certain construction sites. In 2014, the EPA made several revisions to the 2009 rule requirements including defining "infeasible" and removing the numeric turbidity effluent limitation and monitoring requirements.

In addition to the activities listed above, ADEM is also the delegated authority from the EPA to regulate discharges from MS4s. ADEM requires municipalities and other large operators of MS4s, such as the Alabama Department of Transportation (ALDOT), to obtain and comply with terms of an NPDES permit to control the discharges from such systems.

CWA § 303(D)

Under Section 303(d) of the 1972 CWA, states, territories, and authorized tribes are required to develop lists of impaired waters. These impaired waters do not meet water quality standards that states, territories, and authorized tribes have set for them, even after point sources of pollution have installed the minimum required levels of pollution control technology. The law requires that these jurisdictions establish priority rankings for waters on the lists and develop total maximum daily loads (TMDLs) for these waters. The TMDLs are used to establish limits for the amount and type of pollutant discharges that the receiving streams can handle without experiencing further degradation.

Within the Shades Creek Watershed, Cooley Creek, Mill Creek, and Mud Creek are listed on the Alabama § 303(d) list for pathogens (E. coli), and Shades Creek is listed for pathogens, siltation, turbidity, and habitat alteration. All of these drainages have approved TMDL's (2003). Once a TMDL is established, additional research may be warranted to determine additional measures that can be implemented to meet the required TMDL. Mud Creek and Mill Creek are on the current (2020) ADEM 303(d) list. Mud Creek and Mill creek are proposed for pathogens (E. coli).

<u>CWA § 319</u>

Under Section 319 of the 1972 CWA, the Alabama Non-Point Source (NPS) Management Program protects and restores water quality by; strategically focusing programmatic goals and objectives to achieve and sustain water quality standards, clearly articulate programmatic goals so that project workplan planning and implementation reflect actions to advance those goals, reflect a balance between watershed-based planning and implementation that best utilizes resources to deliver measurable nonpoint source pollutant load reductions and water quality improvement results, leverage and integrate a mix of public and private sector programs to align priorities and make the best use of available resources to control nonpoint sources of pollution, and the tracking and reporting of results to demonstrate progress and ensure accountability.

<u>CWA § 401</u>

Under Section 401 of the 1972 CWA, permit applications must be submitted, and reviewed by ADEM for consistencies within the State's active water quality program. It is noted that a federal agency may not issue a license or permit without state or authorized tribe consent that warrants a Section 401 water quality certification verifying compliance with existing water quality requirements, or that waves the certification requirement to conduct any activity that may result in any discharge into waters of the U.S.

8.1.2 State Authorities

A comprehensive program of environmental management for the state was established in 1982 when the Alabama Legislature passed the Alabama Environmental Management Act. The law created the Alabama Environmental Management Commission and established ADEM, which absorbed several commissions, agencies, programs, and staffs that had been responsible for implementing environmental laws. ADEM administers all major federal environmental laws, including the CWA. The ADEM assumed these responsibilities only after demonstration that State laws and regulations are at least equivalent to federal standards and that the State has matching funds and personnel available to administer the programs. In addition, the Alabama Department of Conservation and Natural Resources (ADCNR) and the Alabama Department of Economic and Community Affairs (ADECA) Office of Water Resources (OWR) may also have jurisdiction over certain actions that affect state waters and natural resources.

Alabama Water Pollution Control Act

The Alabama Water Pollution Control Act (AWPCA), Alabama Code § 22-22-1, is the state's version of the CWA. The Act provides the framework for the adoption of rules establishing water quality standards, the adoption of effluent limitation guidelines, a system for issuance of permits, which shall include effluent limitations for each discharge for which a permit is issued, and such other rules as necessary to enforce water quality standards adopted by ADEM.

Water Quality Criteria

As outlined in CWA § 401(a), CWA § 404 permit applications must be reviewed by the ADEM to ensure that the proposed permitted action is consistent with the State's water quality program. This review is to ensure that any discharge of dredged or fill material will not cause or contribute to a violation of the State's water quality standards. State water quality standards are outlined in ADEM Admin. Code Reg. 335-6-10.

Construction Site Stormwater

The CWA and federal regulations require construction site operators to obtain NPDES permit coverage for regulated land disturbances and associated discharges of stormwater runoff to state waters. Effective April 1, 2021, ADEM established the General NPDES Permit No. ALR100000 for discharges associated with regulated construction activity that will result in land disturbance equal to or greater than one acre, or from construction activities involving less than one acre, and which are part of a common plan of development or sale equal to or greater than one acre. This permit replaced the previous General NPDES Permit No. ALR100000 which expired on March 31, 2021. The General Permit falls under the authority of ADEM Admin. Code Reg. 335-6-6, along with the other actions regulated by the NPDES program.

Construction site operators and/or owners seeking coverage under this general permit must submit a Notice of Intent (NOI) in accordance with the permit requirements. Operators and/or owners of all regulated construction sites must implement and maintain effective erosion and sediment controls in accordance with a Construction Best Management Practices Plan (CBMPP) prepared and certified by a Qualified Credentialed

Professional (QCP). For priority construction sites, which include any sites that discharge to (1) a waterbody listed on the most recently EPA approved 303(d) list of impaired waters for turbidity, siltation, or sedimentation; (2) any waterbody for which a TMDL has been finalized or approved by EPA for turbidity, siltation, or sedimentation; (3) any waterbody assigned the Outstanding Alabama Water use classification in accordance with ADEM Admin. Code Reg. 335-6-10-.09; and (4) any waterbody assigned a special designation in accordance with ADEM Admin. Code Reg. 335-6-10-.10, the CBMPP must be submitted to ADEM for review along with the NOI. A Qualified Credentialed Inspector (QCI) or QCP must conduct regular inspections of regulated construction activities to ensure effective erosion and sediment controls are being maintained.

State MS4 NPDES Program

The MS4 NPDES Program, administered by ADEM, requires certain designated municipalities and other entities to obtain an MS4 permit (either Phase I or Phase II). Portions of Jefferson, Shelby, and Tuscaloosa Counties are located within either a Phase I or Phase II MS4 permitted area and the corporate boundaries of the Cities of Bessemer, Birmingham, Homewood, Hoover, Irondale, Mountain Brook, and Vestavia Hills are covered under a Phase I or Phase II MS4 permit.

CWA § 303(D)

ADEM is required by the EPA to designate waters for which technology-based limits alone do not ensure attainment of applicable water quality standards. This list is to be submitted to the EPA on April 1st of each even-numbered year. Impairments include things such as nutrients, pesticides, pathogens, metals, organic enrichment, and siltation, among other things, and can be caused by point sources or non-point sources. The impaired waters must then be sampled and a TMDL amount or limit must be calculated. The Shades Creek Watershed is proposed to have one impaired stream, and an approved TMDL (2003) is listed. Any activity within the Shades Creek Watershed should take into consideration the cause of the listing and determine if the proposed action is contributing to the impairment. If a proposed activity is contributing to the impairment, the best available technology should be considered to minimize the potential of contributing to the impairment of the watershed.

8.1.3 County Authorities

The applicable ordinances for Bibb, Jefferson, Shelby, Tuscaloosa Counties are summarized in Table 8.1.

8.1.4 City Authorities

The applicable City ordinances for Bessemer, Birmingham, Homewood, Hoover, Irondale, Mountain Brook, and Vestavia Hills are summarized in **Table 8.2**.

8.2 REGULATORY OVERLAP

Federal, state, and local regulations overlap within the Shades Creek Watershed. Federal and state water quality regulations apply to all areas within the Watershed. The various City MS4 permits apply to the Watershed, and the Jefferson Tuscaloosa, and Shelby County MS4 permits apply to the portions of the Watershed located outside of City limits. Land disturbance activities within the Watershed must have:

- A CWA §404 permit with review by all agencies and the public, if not authorized by a NWP (if disturbance activity proposes to fill jurisdictional waters of the U.S.);
- ADEM water quality certification (if disturbance activity proposes to fill jurisdictional waters of the U.S.);
- ADEM General NPDES Permit No. ALR100000 (if disturbances are equal to or greater than 1 acre);
- County Land Disturbance Permit;
- and City Land Disturbance Permit (if located within the boundaries of a City MS4 Permit).

Some Cities have extraterritorial jurisdictions that extend up to five miles beyond their boundaries for planning purposes, and overlap into the county, but not adjacent municipalities. This extraterritorial boundary is for planning purposes only; therefore, only the federal, state, and county water quality regulations apply to these areas. All regulations state that where there is an overlap in jurisdiction within the Watershed, the more stringent requirements apply.

8.3 **REGULATORY DEFICIENCIES**

Observation 1

The QCI training programing only includes training on inspections during construction and does not include training of post-construction BMPs. In addition, not all individuals covered by the definition of a QCP are qualified to inspect post-construction BMPs.

Observation 2

Except as it relates to flood control, there are currently no federal or state post-construction stormwater management controls, which leaves these regulations to fall under local government jurisdiction. While a large portion of the Watershed is regulated by local ordinances and regulations, the remainder of the Watershed has no post-construction stormwater control regulations.

Observation 3

The State of Alabama has established a 25-foot buffer requirement related to wetlands and riparian buffers for all new construction sites greater than one acre. Federal and state permits are regularly issued, allowing wetlands, streams, and riparian buffers to be impacted. Although mitigation for these impacts are typically required, mitigation measures often occur outside of an impacted watershed, creating a net loss of these valuable resources within the watershed.

Observation 4

The inspection and enforcement power for water quality concerns falls primarily to County and municipal public works and development departments. These departments have a multitude of other responsibilities and may not be trained to recognize storm water issues.

Observation 5

Bibb County has no local stormwater management plan, floodplain ordinances, or erosion and sediment control ordinances.

8.4 ENFORCEMENT

The inspection and enforcement power for water quality concerns falls primarily to County and municipal public works and development departments. These departments have a multitude of other responsibilities and may not be trained to recognize storm water issues.

Table	Table 8.1 – County Level Regulatory Table								
County	MS4 Program NPDES Permit	SW Program	SSO/Illicit Discharge Program	Floodplain Management Program	Ordinances	Responsible Authority			
Bibb	None	None	None	None	2019 Code of Alabama, Title 45 - Local Laws, Chapter 4 - Bibb County	N/A			
Jefferson	MS 4 Phase I Permit # AL000001	Yes 2013	Yes 2018	Yes 2019	Article 10, 11, 13, Subdivision and Construction Ordinance	Development Services Environmental Services			
Shelby	NPDES Permit # ALS000008	Yes 2019	Yes 2019	Yes 2013	Subdivision Regulations Resolutions 13-01-28-03, 19-8-26-04, 09-02-09-06, 07-02-12-07 Stormwater ordinance 98-09-28-8	County Engineer, Department of Development Services			
Tuscaloosa	MS 4 Phase II Permit # ALR040001	Yes 2019	Yes 2018	Yes 1995, 2008	Title 11, chapter 52, sections 1 through 84; and title 41, chapter 9, section 166 of the Code of Alabama, 1975 Flood Damage Prevention Ordinance 2008	Public Works Department			

Table 8.1 – County Level Regulatory Table

Table 8.2 – Local Level Regulatory Table

Municipality	MS4 Program NPDES Permit	SW Program	SSO/Illicit Discharge Program	Floodplain Management Program	Ordinances	Responsible Authority
Bessemer	MS 4 Phase I Permit # ALS000022	Yes 2018	Yes 2018	Yes 1995	Bessemer, AL Code of Ordinances, Chapters 50 and 58	Build and Inspections Department Storm Water Management program
Birmingham	MS 4 Phase I Permit # ALS000032	Yes 2018	Yes 2018	Yes 1995	Birmingham City Code Stormwater Management plan Floodplain Ordinances Zoning Ordinances	City Stormwater Management Program, Planning and Engineering, Public Works
Homewood	MS 4 Phase I Permit # ALS000016	Yes 2018	Yes 2018	No	1995, 1422, 2704, 2705, 2706 2005 Subdivision Regulations,	Department Public Works and Inspections, SWMA Program
Hoover	MS 4 Phase I Permit # ALS000027	Yes 2010	Yes 2018	Yes 2013	Ordinance 10, Articles IV and V 13-2226	City Engineer Public Safety Center
Irondale	MS 4 Phase I Permit # ALS000019	Yes 2018	Yes 2018	Yes 2019	Ordinance 464-83, 00-12, 2006-36, 2017-57, 4-0794, 758, 2018-12, 2018-13	Public Works Department
Mountain Brook	MS 4 Phase I Permit # ALS000018	Yes 2013, 2018	Yes 2018	Yes 2013	Ordinances 1496, 2019, 2023, 2024, Subdivision Regulation adopted 2013	Department of Planning, Building, and Sustainability
Vestavia Hills	MS 4 Phase I Permit # ALS000017	Yes 2018	Yes 2019	Yes 2019	2769, 2770, 2771, 2331, 2429, 2262,	Departments of Engineering, Public Works

9.1 INTRODUCTION

Funding projects and activities throughout an entire watershed is not a simple undertaking. Successful implementation of the management measures recommended in this WMP will require the long-term commitment of significant financial resources and community support. The design, construction, and maintenance of stormwater improvements, purchase of land for offline storage, modification/protection of streams to reduce erosion, and/or the purchase and preservation of tracts of land to create greenspace buffers, wetlands, or floodplains to protect stream quality will require significant and reliable funding. The jurisdictional areas of political entities that might provide funding do not necessarily follow or encompass watershed boundaries; therefore, a public-private partnership may be the most effective way to accomplish management goals.

To acquire the funding necessary to undertake significant restoration, preservation, and/or management projects, public and private entities should consider and compare all available funding options. Many financial assistance opportunities, primarily in the form of federal grants and cooperative agreements, are available to help restore, enhance, and preserve watersheds. However, increases in watershed recovery efforts by communities around the nation have substantially increased the competition for these resources.

Financial structures and sources that could provide funding for the management issues and projects identified in this WMP are discussed below. Some financial structures could be helpful across the entire Watershed and some within limited areas. Many would require public-private partnerships and cooperation among landowners, organizations, and governments, rather than imposition by governmental entities.

The following alternatives for funding and financing projects in the Shades Creek Watershed are discussed (with the sections in which they are discussed indicated parenthetically):

- Stormwater utility fees (9.2)
- Property, sales, or other taxes (general funds) (9.3)
- Federal grants, loans, and revenue sharing (9.4)
- Non-governmental organization and other private funding (9.5)
- Impact fees (9.6)
- Special assessments (9.7)
- System development charges (9.8)
- Environmental tax shifting (9.9)
- Capital improvement cooperative districts (9.10)
- Alabama improvement districts (9.11)
- Regional collaboration opportunities (9.12)

9.2 STORMWATER USER FEES

The U.S. Environmental Protection Agency (EPA) indicates the most stable source of funding for stormwater management is a stormwater utility fee (EPA, 2008). Stormwater utility fees provide equitable and transparent sources of funding for stormwater management. A stormwater utility fee would provide a stable, predictable, long-term funding mechanism dedicated to stormwater management improvements. A stormwater utility could undertake planning and construction programs to enable resolution of chronic problems. Sustainable revenues would be generated based on consumption and user fee-based services (Spitzer, 2010).

Stormwater utility authorities are used extensively in many areas of the country. In the State of Alabama, the authority to create a local stormwater utility typically must be granted to a county by legislative statute. However, municipalities that have approved municipal separate storm sewer systems (MS4) ordinances may levee stormwater utility fees. The stormwater user fee typically appears as a separate line item on residential or commercial water and sewer bills, as a special assessment on property tax bills, or as a stand-alone bill making these fees highly visible to the general public. The concept of stormwater management is difficult for the average citizen to grasp and can result in skepticism about the need for stormwater user fees. The user fee is often seen as a tax and can be subject to legal challenges. Therefore, local stormwater ordinances must be carefully crafted to prevent such challenges.

Stormwater user fees can be based on parcel size or the impervious areas within the parcel. Fees for residential and commercial properties may be calculated differently (e.g., a fixed fee for each residential parcel versus a fee based on the amount of impervious area for commercial parcels). Credits may be allowed for on-site attenuation, treatment of stormwater, or for watershed stewardship activities. Surcharges may be added for the type of land use or industrial activity present on the site. Stormwater fee collection is commonly enforced by utility shut-off or by tax liens placed on the owner's property. Most stormwater utilities allow exemptions for certain categories of property. Streets and highways, undeveloped land, and railroad rights-of-way are typically exempt from paying stormwater user fees (Spitzer, 2010 and Leo and Tillery, 2010).

In 2014, the Alabama Legislature approved Act #2014-439, which provides the enabling legislation for all local governments subject to EPA NPDES MS4 permits to implement a SW User Fee system to fund their stormwater management programs. There are over 300 communities with a stormwater user fee system in the southeast. In Alabama, there are only a few communities that have currently implemented a SW user fee system, including but not limited to the City of Anniston, City of Hoover, City of Birmingham, Jefferson County, Madison County, City of Mobile, and City of Montgomery (Campbell, Warren C. 2019). As an example, the City of Anniston generates approximately \$400,000 annually that is utilized for implementing the requirements of their MS4 permit (public education/involvement, illicit discharge detection, erosion and sedimentation, post construction runoff, good housekeeping, etc.). Excluding Florida-based stormwater authorities, a 2013 survey of stormwater utilities in the Southeast (2013 Southeast Stormwater Utility Survey) found that of those who responded:

- 97% operate based on user fees;
- 79% use impervious surfaces as the basis for the fee;
- The average stormwater utility rate was \$3.59 per month;
- The average revenue was \$3,964,000 per year;
- 75% reported that a public information effort was essential or helpful to their mission;
- 47% are combined with a Department of Public Works;
- 13% operated as a separate Authority distinct from local government;
- 77% served only a municipality;
- 10% served a watershed or some other defined area; and
- The average population served was 97,500.

9.3 **PROPERTY, SALES, OR OTHER TAXES (GENERAL FUND)**

The use of public "general funds" to finance projects is considered undesirable because no dedicated source of continuing and consistent funding would be created. This limits the success of funding watershed management plans (WMP), as these programs would have to compete with maintenance and construction projects for funding. Environmental projects are often considered less essential than priorities such as police, fire, and emergency medical personnel. Environmental projects are also vulnerable to budget cuts (Spitzer, 2010). Finally, there is no single or central authority to administer greater Shades Creek Watershed projects as the Watershed falls under many jurisdictions.

9.4 FEDERAL GRANTS, LOANS, AND REVENUE SHARING

The United States Federal Government offers numerous grants, loans, and revenue-sharing opportunities that may be used by municipalities and non-profit groups to conduct studies and construct projects related to watershed protection, stream restoration, and stormwater management. A composite list of federal funding opportunities follows. The Clearinghouse for Federal Grant Opportunities (also known as Grants.gov) is a central storehouse for information about more than 1,000 grant programs providing approximately \$500 billion in annual awards. The EPA Catalog of Federal Funding Sources for Watershed Protection is a searchable database of financial assistance sources available to fund a variety of watershed protection projects. Also, 53 specific funding programs offered by nine different federal agencies are summarized in **Table 9.1**.

Acronym	Agency	Number of Programs
EPA	Environmental Protection Agency	12
FEMA	Federal Emergency Management Agency	2
NOAA	National Oceanic and Atmospheric Administration	2
USACE	U.S. Army Corps of Engineers	2

Table 9.1 Federal agencies offering funding programs

USDA	U.S. Department of Agriculture	12
USDA	0.5. Department of Agriculture	12
NFWF	National Fish and Wildlife Foundation	12
USDOI	U.S. Department of the Interior	4
USFWS	U.S. Fish and Wildlife Service	6
USGS	U.S. Geological Survey	1

Several of the potential funding sources are appropriate for projects, studies, or issues relevant to the Shades Creek Watershed and should be considered. Grants are popular because the funds received do not have to be repaid. However, grants discourage consideration of long-term costs such as maintenance, adaptive management, and operation. Additionally, grants are very competitive and awarded on merit; the considerable effort required to produce a grant application may not be rewarded with funding. Grants may also require matching funds and contributions that are difficult to obtain. Several of the more pertinent grant opportunities are discussed below.

9.4.1 State of Alabama Revolving Loan Fund

The EPA State Revolving Fund (SRF) loan program offers a reliable source of funding (Berahzer, 2010). There are separate SRF programs for "Clean Water" and "Drinking Water". Funds are provided annually to each state by the federal government with the states providing a 20% matching amount. In order to receive funding, a project must be on the state's annual "Intended Use Plan" (IUP) list. The IUP contains a "comprehensive" list and a shorter "fundable" or "priority" list. A public comment process is required for the IUP. Since 2007, the SRF has moved beyond the traditional "water treatment works" projects and has begun to emphasize nonpoint sources as funding priorities.

The following information regarding the State of Alabama Revolving Fund was accessed on March 29, 2021 on the Alabama Department of Environmental Management (ADEM) website (http://www. adem.state.al.us/programs/water/srf.cnt):"The Clean Water State Revolving Fund (CWSRF) and the Drinking Water State Revolving Fund (DWSRF) are low interest loan programs intended to finance public infrastructure improvements in Alabama. The programs are funded with a blend of state and federal capitalization funds. ADEM administers the CWSRF and DWSRF, performs the required technical/environmental reviews of projects, and disburses funds to recipients."

Benefits of an SRF Loan

- The SRF offers a loan interest rate substantially lower than the prevailing municipal bond rate available to "AAA" rated municipalities
- The interest rate is fixed with a 20-year payback (extended term may be available)
- Loan repayment does not begin until construction completion date (capitalized interest accrues)
- The loan recipient is not required to pay any ongoing trustee expenses or rebate expenses normally associated with a local bond issue.

Projects Eligible for Funding

Any public body, including counties, state agencies, incorporated cities and towns, boards, and authorities, may apply for SRF financing. An ability to repay must be substantiated along with meeting other specified standards. Projects that strengthen compliance with Federal and State regulations and/or enhance protection of public health are eligible for consideration to receive an SRF loan. If a project qualifies, the engineering, inspection, and construction costs are eligible for reimbursement. Among the projects which qualify for funding are:

- Publicly owned water or wastewater treatment works
- Sewer rehabilitation
- Interceptors, collectors, and pumping stations
- Decentralized wastewater treatment
- Drinking water storage facilities
- New/rehabilitated water source wells
- Water transmission/distribution mains
- Consolidation/water system interconnection
- Water conservation and reuse projects
- Green infrastructure
- Streambank restoration
- Green roofs
- Permeable pavements
- Rain gardens and biofiltration products
- Brownfield remediation
- Watershed and estuary protection projects.

9.4.2 "Green" Stimulus Funding

Under the 2009 American Recovery and Reinvestment Act (i.e., Stimulus Act), the EPA introduced, as a part of its SRF Loan Program, a Green Project Reserve, and has maintained this funding mechanism. The Green Project Reserve is intended for SRF funds to be used by states for projects that address green infrastructure, water/energy improvements, or other environmentally innovative activities (Berahzer, 2010). Some green infrastructure projects may fit into either the "Clean Water" or "Drinking Water" divisions of the SRF program. In general, the combination of the Green Project Reserve and additional subsidization could lead to better financing terms for these projects.

ADEM's stated goal in its 2020 annual reports for the clean water and drinking water funds, that not less than 10% of the Capitalization Grant for projects will address green infrastructure, water or energy efficiency improvements, or other environmentally innovative activities. Many stormwater projects and Low Impact Development (LID) strategies may be considered "green" under this funding category. Examples include porous pavement, bioretention facilities, rain gardens, green roofs/walls/streets, wetlands restoration, constructed wetlands, urban retrofit programs, infiltration basins, landscaped swales, downspout disconnection, and tree planting. Land acquisition services and the actual cost for the purchase of land or easements may also be included in the scope of this definition.

9.4.3 Five Star Restoration Program

The EPA supports the Five-Star Restoration Program by providing funds to the NFWF, the National Association of Counties, NOAA's Community-based Restoration Program, and the Wildlife Habitat Council. These groups are then able to make subgrants to support community-based wetland and riparian restoration projects. Competitive projects must have a strong on-the-ground habitat restoration component with long-term ecological, educational, and/or socioeconomic benefits to the people and their community. Preference is given to projects that are part of a larger watershed or community stewardship effort and include a description of long-term management activities. "Projects must involve contributions from multiple and diverse partners, including citizen volunteer organizations, corporations, private landowners, local conservation organizations, youth groups, charitable foundations, and other federal, state, and tribal agencies and local governments" (Private Landowner Network, 2015). It is desirable that each project involve at least five partners who are expected to contribute funding, land, technical assistance, workforce support, or other in-kind services that are equivalent to the federal contribution. The 2020 funding for this program is \$1.5 million.

9.4.4 Clean Water Section 319(h)

Section 319(h) of the Federal Clean Water Act funds projects or programs that aim to reduce nonpoint sources (NPS) of pollution and lead to measurable improvements in water quality. Minimum requirements for funding include: 1) Implementation of watershed-based plan that address EPA's Nine Elements for Watershed Planning; and 2) a minimum of 40% non-federal match through local funds, in-kind services, or other non-federal sources. Grant proposals should focus on implementation of NPS components of TMDL causes and sources in approved TMDLs or section 303(d)-listed streams.

Eligible elements for projects may include:

- Projects of State-wide Importance
- Education/Information Programs
- Technical Assistance/Planning
- Best Management Practices (BMP)
- Implementation of Local Regulatory Programs
- Groundwater Protection
- Assessment
- Training
- Watershed Projects/Watershed Resource Restoration
- Development and/or Implementation of Total Maximum Daily Loads (TMDLs).

9.4.5 Wetlands Program Development Grants

The EPA funds Wetland Program Development Grants to encourage comprehensive wetlands program development by promoting the coordination and acceleration of research, investigations, experiments, training, demonstrations, surveys, and studies relating to the causes, effects, extent, prevention, reduction, and elimination of water pollution.

Projects should build the capacity of states, tribes, and local governments to effectively protect wetland and riparian resources. Projects funded under this program support building or refining a wetlands program through four core elements: regulation, monitoring/assessment, voluntary restoration/protection, and water quality standards for wetlands. Estimated 2020-2021 funding for this program is \$660,000.

9.5 NON-GOVERNMENTAL ORGANIZATIONS AND OTHER PRIVATE FUNDING

Private foundations and corporations may be another source of funding for improvements. Several funding sources are available from non-governmental organizations (NGOs) and other private entities. Three of the listings are searchable electronic databases of foundation and corporate grants in various fields: (1) the Chronicle of Philanthropy Guide to Grants; (2) the Community of Science Database; and (3) the Foundation Center. Local governmental entities and non-profit agencies involved with the Watershed should investigate these databases with specific project objectives in mind. The Kodak American Greenways Program, RBC Bank Blue Water Project Grants, and Surdna Foundation Sustainable Environmental Grants offer specific funding opportunities for environmental improvement projects related to watershed protection and Green Infrastructure (GI). These programs are included here because of their direct applicability to ongoing efforts in the Watershed.

9.6 IMPACT FEES

Impact fees are paid by developers (usually at the time of development) to obtain a building permit. The fee is designed to reimburse the government for the additional impact a development may have on the community. Impact fees may be for transportation (i.e., increased impact on roads and bridges as a result of constructing a development), water and sewer (i.e., the impact on the system capacity as a result of increased volume and demand), as well as other public infrastructure impacts. Typically, a direct relationship between the development and the impact fee must exist. Impact fees, which often must be authorized by statute, are used for capital improvements, not for maintenance. They are a one-time, up-front fee for new construction (Mustian, 2010). Because impact fees are an unreliable and unstable long-term funding source for maintenance and improvements, they are not the most viable option for implementation of the WMP and associated projects. Developers resent impact fees, and timely expenditure of funds can also be an issue. As previously noted, the Shades Creek Watershed falls within many jurisdictions, and there is not a central authority to administer impact fees.

9.7 SPECIAL ASSESSMENTS

A special assessment is a charge levied for the benefit a particular property receives for a specific public improvement. The cost and benefit must be related to the property itself. Special assessments may be based on property area or frontage. Special assessments are distinguishable from taxes, but they have been challenged in court. They may be used to fund capital and operating costs. In some states, special assessments may be placed on the tax rolls that achieve the same status as ad valorem taxes. However, assessing governmental property and property owned by non-profits that are not on the tax rolls may pose a challenge. Collection of special assessments can be spread over time.

Special assessment fees for the maintenance of public sewers and septic tanks have been assessed in some communities. In the Chesapeake Bay area of Maryland, the Bay Restoration Fund (BRF) has a \$2.50 per month wastewater fee that provides over \$65 million per year for upgrades to wastewater treatment plants and \$12.6 million per year for septic tank

9.8 SYSTEM DEVELOPMENT CHARGES

System development charges (also known as connection fees or tie-in charges) are one-time fees commonly charged to new customers to cover the costs for additional maintenance or for service extensions. The amount of the new customer's system development charge is typically calculated based on the potential demand the new customer will place on the system. Stormwater system development charges can also be used. The amount of a customer's stormwater system development charge is typically determined by the area of the customer's property (EPA, 2008).

9.9 ENVIRONMENTAL TAX SHIFTING

Environmental tax shifting is a creative concept proposed by environmental groups to redirect tax code incentives to support energy conservation and to sustain the environment. Examples include: (1) a pay-to-pave tax could be levied on newly paved surfaces on a per-square-foot basis; and (2) the discontinuance of the state tax exemptions for fertilizer and pesticide sales. The income from these measures could then be directed toward environmental projects (EPA, 2008). One limitation to an environmental tax shifting approach is the lack of routine public or political support necessary for acceptance and implementation.

9.10 CAPITAL IMPROVEMENT COOPERATIVE DISTRICTS

Authorized under Chapter 99B of Title 11, Code of Alabama, capital improvement cooperative districts can be formed by one or more governmental entities, including counties, municipalities, public utilities and public corporations such as industrial or commercial development authorities. Once formed, the districts can finance and construct various capital improvements and can then enter arrangements such as leases or contracts to make the improvements available to users. The members of the district (i.e., the public bodies) can also contribute funding to finance the projects. The counties and municipalities within the watershed could create a vehicle to collectively finance and make improvements on a watershed basis by forming a cooperative district to facilitate that effort. Each entity could contribute to the costs incurred, either directly or through the payment of shares of the debt service on bonds issued by the district.

The advantages of a cooperative district is that they offer great flexibility. They can comprise various public bodies with an interest in the project. They support projects that can be financed by any of its members, and therefore, they may be able to acquire, construct, and improve a larger number of capital items for both public and private use. Cooperative districts can protect a governmental body from the potential liability of ownership of an improvement. The disadvantages include the lack the authority to assess private users. They can charge for services or facilities only on a bilateral basis in which the benefiting parties agree on the charges upfront contractually. Thus, they are most effective when providing a service or facility (i.e., utilities or even buildings for private use) needed by potential users who agree to be assessed a fee

for the service or facilities. It is difficult to obtain public support as property owners do not generally want to voluntarily pay for improvement projects on public property.

9.11 ALABAMA IMPROVEMENT DISTRICTS

Authorized under Chapter 99A of Title 11, Code of Alabama, improvement districts are formed by a county or municipality upon application by all the affected landowners. Once formed, they can acquire, construct, and install a wide range of public infrastructure and can assess the landowners for their pro rata shares of the cost of the improvements. The assessments constitute liens against the land. Depending on the range of projects undertaken, the improvement districts can effectively become subunits of government for providing services beyond those typically provided. For instance, they have been widely used for residential or multi-use developments to provide for the initial and maintenance costs of infrastructure not provided by local government.

The authority to assess and to create liens on property provides a powerful financing alternative. Improvement districts are also ideally suited to construct and own public infrastructure. However, landowners' consent may be impossible to achieve in an area as large as the Shades Creek Watershed. If a project is proposed that affects a single significant property, or especially a project required for the development or redevelopment of the property, an improvement district could be used to finance the project. It would be the responsibility of the property owner to pay the improvement district. For instance, if a large portion of a watershed, or a large shopping center, was being developed that required drainage or retention facilities beyond the normal requirements, an improvement district could be a good vehicle.

9.12 REGIONAL COLLABORATION OPPORTUNITIES

There are regional collaboration opportunities applicable to watershed projects. The EPA Region 4 sponsors three: 1) the Green Infrastructure Partnership, 2) Smart Growth Implementation Assistance, and 3) Watershed Protection and Restoration Assistance collaboration opportunities.

The primary goal of the Green Infrastructure Partnership is to reduce runoff volumes and sewer overflow events through the widespread use of green infrastructure management practices that help maintain natural hydrologic functions by absorbing and infiltrating precipitation where it falls. The Smart Growth Implementation Assistance program is an annual, competitive solicitation open to state, local, regional, and tribal governments (and non-profit organizations that have partnered with a governmental entity) to incorporate smart growth techniques into their future developments. Through the Watershed Protection and Restoration Assistance Partnership, the staff of EPA Region 4 works with state and local governments and watershed organizations to facilitate protection and restoration efforts in targeted watersheds.

9.13 SUMMARY

There are considerable financial support opportunities to supply funds for the management measures recommended in this WMP. However, because the Shades Creek Watershed falls within several governmental jurisdictions, it lacks a central

authority to administer many of the potential funding sources. Establishment of a public-private partnership may provide additional funding options for watershed management. Additionally, a partnership clearly illustrates to the grants market the communities' active resolve to serve as vested and committed partners in the watershed management process. This endeavor would significantly enhance the viability, competitiveness, and position of this WMP as it pursues federal, state, local, and private grant assistance needed for implementation.

10.0 MONITORING AND SAMPLING PLAN

A monitoring plan is necessary to document the overall health of the Shades Creek Watershed, provide long-term water quality trend data, track the success or failure of the implemented management measures, and determine where additional management measures are necessary. The monitoring plan should encompass the greatest possible portion of the Watershed, with the least number of sampling stations, while providing sufficient detail to identify probable source areas for elements of concern.

Based on the identified issues and/or data gaps in the WMP, the following sections provide a description of the recommendations for a water quality monitoring program for the Shades Creek Watershed.

10.1 LONG-TERM TREND WATER QUALITY MONITORING

The WMP identifies sedimentation, nutrient loading, pathogens (fecal bacteria), and habitat alteration (urbanization) as critical issues affecting the health of the watershed. Data collection and analysis prior to this WMP was thorough and established baseline conditions for many water quality parameters. Although some existing monitoring stations provide consistent data over a long period of time, the temporal, spatial, and parametric coverage of the ADEM, Alabama Water Watch (AWW), Jefferson County, and the City of Birmingham (MS4 program) monitoring programs vary substantially over the period of record. This has been identified as potential data gaps in terms of long-term trend water quality monitoring. In addition, the extensive urbanization of portions of the watershed indicate that water quality samples should also be analyzed for pesticides/herbicides, and petroleum/oil/grease. In order to address these noted issues, the following sections are a description of recommended sampling parameters and other monitoring / modeling that should be implemented as part of the monitoring program:

These following parameters should be collected consistently at existing monitoring stations to support long-term tracking of status and trends and regulatory compliance. In addition, establishment of additional monitoring locations should be established in the Lower Shades Creek, Cooley/Mud Creek, and southern section of the Upper Shades Creek watershed.

- 1. <u>Standard Field Parameters</u> Standard procedures during the collection of water quality samples should include recording of temperature, pH, specific conductance, and dissolved oxygen.
- 2. <u>Total Suspended Solids and Turbidity</u> Total suspended solids, bed sediment, and turbidity measurements should be measured at sampling locations. Turbidity measurements should be collected under a variety of flow conditions. All data collection and analyses should utilize Geological Society of America (GSA) data collection protocols. The success of management measures will be assessed, in part, by the degree to which sediment loading rates are reduced or remain stable as the percentage of developed land in the watershed increases.

10.0 MONITORING AND SAMPLING PLAN

- 3. <u>Nutrients (Total Nitrogen and Total Phosphorus)</u> Total nitrogen and phosphorus concentrations in water is a combined measure of inorganic and organic compounds. Elevated levels of nitrogen and phosphorus are an indication of sewage runoff, animal manure, and fertilizers. Nitrogen and phosphorus concentrations in some areas of the Shades Creek Watershed exceed the levels at which excessive algae growth may occur. The success of management measures will be assessed, in part, by the degree to which the concentration of nitrogen and phosphorus in the surface water system is reduced or stabilized.
- 4. <u>Bacteria</u> Tributaries within the Shades Creek Watershed are utilized for recreation, swimming, and fishing. The introduction of pathogens into the surface water because of sanitary sewer overflows and stormwater runoff is a critical issue within the Watershed. Monitoring for fecal coliform and enterococcus bacteria should be part of the monitoring plan for the watershed. Reductions in bacteria counts would indicate the effectiveness of management measures in limiting and reducing pathogen inputs into the Watershed.
- 5. <u>Pesticides and Herbicides</u> Unlike many other contaminants, pesticides and herbicides derive solely from anthropogenic sources. The presence of pesticides and herbicides is primarily due to stormwater runoff from agriculture and lawn and garden application. Monitoring for selected pesticide and herbicide concentration would indicate the success, or lack thereof, of the management measures in limiting unfiltered urban runoff into surface water drainages.
- 6. <u>Petroleum, Oil, and Grease</u> Petroleum in the waters of Shades Creek most likely derive solely from anthropogenic sources. The presence of petroleum is primarily due stormwater runoff from parking lots and roads, with minor contributions from leaking storage facilities. Monitoring for selected petroleum, oil, and grease parameters would indicate the success, or lack thereof, of the management measures in limiting unfiltered urban runoff into surface water drainages.

10.2 POLLUTANT SOURCE TRACKING PROGRAM

The presence of pathogens in the Shades Creek Watershed and the hazards they pose to freshwater resources and human health has been identified as an issue in the watershed. Bacteria pathogens can originate from a variety of point and non-point sources. Point source discharges and stormwater runoff are not the only contributors of pathogens to the watershed. It is suspected that a significant source of pathogens in the watershed comes from sewer system overflows and septic systems.

Identification of these sources can often be a complex task to determine. Standard measurements of pathogens as described above, allow for the identification and prioritization of areas that may be impaired for pathogens. However, in order to effectively improve water quality and meet the TMDL goals, both the host source and geographical origin of pathogenic bacteria needs to be understood. Microbial Source Tracking (MST) is a tool that can be used to better classify and allocate the contributions of fecal contamination, particularly from nonpoint

10.0 MONITORING AND SAMPLING PLAN

sources, once a problem is identified. MST protocols followed by the U.S. Geological Survey (USGS) typically include several microbiological targets or source identifiers, detection methods, and analytical approaches to link data from water samples to the fecal sources (Stoeckel, D.M., 2005). This methodology of source tracing can help identify animal sources (e.g., human, dogs, cattle, etc.) of any observed bacterial violations. In addition to the MST sampling, an assessment of sediment loadings specific to the primary tributary flows will need to be conducted in order to identify source of input.

10.3 BIOLOGICAL AND HABITAT ASSESSMENT

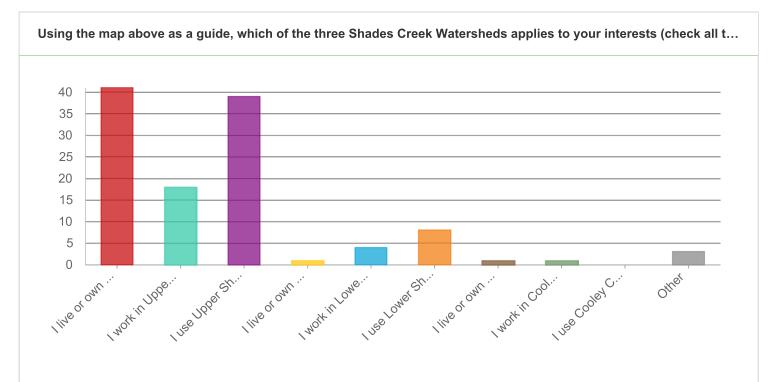
The purpose of the biological and habitat assessment (recommended in Chapter 7 – Implementation) will be to characterize and grade the overall health of the ecosystem along specific tributaries within the Shades Creek Watershed. Biological assessments should utilize a standard protocol established by a state or federal agency, such as the U.S. Environmental Protection Agency's (EPA's) Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish. Biological assessments should be performed at selected water quality monitoring stations representing each of the sub-watersheds and should include population surveys of fish communities, benthic invertebrate species, characterization of stream habitat, and assessment of the streams main channels and tributaries. In addition, an assessment of the flora, fauna, and protected and invasive species specific to the watershed should be conducted.

10.4 HYDROLOGICAL MODEL

Considering that urbanization and overdevelopment have been identified as an issue in the WMP, it would be beneficial to develop a hydrologic model for the Shades Creek Watershed. This model should include at a minimum 1) updated impervious surface information, 2) identify priority sub-watersheds that experience flows exceeding the capacity of the infrastructure and natural systems, 3) identify sub-watersheds that need to regulate post construction peak flows to less than pre-construction post flows in order to address capacity issues, and 4) Identify opportunities for the installation of green infrastructure (i.e., infiltration of stormwater runoff)

- 1. City of Caramel, IN. (2008, May 22). WATER POLLUTION WHAT'S THE PROBLEM WITH LITTER [PDF]. Caramel, IN: Caramel.in.gov.
- TRIAD Smith, K. (2020, January 06). Fighting waste in the Wild: The effect of litter on RIVERS. Retrieved March 10, 2021, from <u>https://triadrivertours.com/river-research/2019/2/9/fighting-waste-in-the-wild-the-effect-of-litter-on-rivers</u>.
- U.S. EPA, 2013. U.S. Environmental Protection Agency. (2013). Level III ecoregions of the continental United States: Corvallis, Oregon. U.S. EPA – National Health and Environmental Effects Research Laboratory, map scale 1:7,500,000. <u>https://www.epa.gov/eco-research/level-iii-and-iv-ecoregionscontinental-united-states</u>.
- 4. EPA ecoregions of Alabama, 2001. Griffith, G.E., J.M. Omernik, J.A. Comstock, G. Martin, A. Goddard, and V.J. Hulcher. (2001). *Ecoregions of Alabama*. U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory. Corvallis, OR.
- 5. Ecoregions of Alabama and Georgia, 2001. Griffith, G.E., Omernik, J.M., Comstock, J.A., Lawrence, S., Martin, G., Goddard, A., Hulcher, V.J., and Foster, T. (2001). *Ecoregions of Alabama and Georgia, (color poster with map, descriptive text, summary tables, and photographs): Reston, Virginia*. U.S. Geological Survey (map scale 1:1,700,000).
- 6. Birmingham Area Climatology <u>https://www.weather.gov/bmx/climo_bhmclimograph.</u>Garrison, M. *Birmingham Area Climatology*. National Weather Service.
- USGS, 1990.<u>https://pubs.usgs.gov/ha/ha730/ch_g/G-text9.html.</u> United States Geologic Survey (USGS).
 (1990). Ground Water Atlas of the United States Alabama, Florida, Georgia, and South Carolina.
- 8. FEMA, 2018 <u>https://www.fema.gov/disaster/updates/fema-flood-maps-and-zones-explained</u>
- 9. FEMA Flood Maps and Zones Explained. Release Date: 04/04/2018 14:54. <u>Federal Emergency</u> <u>Management Agency (FEMA), 2015</u>. *National Flood Hazard Layer (revision 2016; amendments 2000-2014*. Department of Homeland Security, Washington, D.C.
- 10. FGDC, 2013 <u>https://www.fws.gov/wetlands/documents/Classification-of-Wetlands-and-Deepwater-</u> <u>Habitats-of-the-United-States-2013.pdf</u>
- 11. Federal Geographic Data Committee (FGDC). (2013). *Classification of wetlands and deepwater habitats of the United States*. FGDC-STD-004-2013. Second Edition. Wetlands Subcommittee, Federal Geographic Data Committee and U.S. Fish and Wildlife Service. Washington, DC.
- 12. WFO, 2014-2019 <u>https://w2.weather.gov/climate/index.php?wfo=bmx</u> Weather Forecast Office (WFO). (2014-2019). *WFO Monthly/Daily Climate Data*. NWS/NOAA Birmingham Station.

13. IPaC, 2019


https://ecos.fws.gov/ipac/location/DKCE53SZXVDNHEQMOCZ5FYFST4/resources#endangered-species. Information for Planning and Consultation (IPaC). (2019). U.S. Fish & Wildlife Service (FWS).

- 14. ANHP, 2019. Alabama National Heritage Program (ANHP). (2019). *Monitoring Program for rare species in Jefferson County*. NatureServe Network.
- 15. CBER, 2015. Population Estimates for Cities and Towns in Alabama https://alabama.app.box.com/s/dyhbb6tgoe3wdc7cax5nug3ww1zo6i1q
- 16. CBER, 2018. Population Estimates for Counties in Alabama. https://alabama.app.box.com/s/go46dtnv2ktiyo5lwx7l8qko767rls7n
- USCB, 2001. Jefferson County census population change 90-00. Source: U.S. Census Bureau, Census 2000 Redistricting Data (P.L. 94-171) Summary File and 1990 Census. Internet Release date: April 2, 2001.
- 18. History & Culture <u>https://www.nps.gov/bicr/learn/historyculture.htm</u>
- 19. Al.com, 2019 <u>https://www.al.com/news/2019/11/alabama-is-home-to-3rd-most-endangered-species-in-the-nation-heres-what-we-can-do-about-it.html</u>
- USGS, 2017. <u>https://water.usgs.gov//GIS/huc.html.</u> United States Geological Survey (USGS). 2017. USGS National Hydrography Dataset (NHD). Available on the World Wide Web (http://nhd.usgs.gov), accessed 9/20/2019.
- 21. NRCS, 2006. Natural Resources Conservation Service (NRCS), United States Department of Agriculture. 2006. *Soil Survey Geographic (SSURGO) Database for Mobile County (2006), Alabama*. Available online. Accessed [03/24/2015]
- 22. Native Americans in Alabama. http://www.encyclopediaofalabama.org/article/s-142
- 23. USGS, 2015. U.S. Geological Survey National Water Information System. (2015). *Water Quality Samples for Alabama: Sample Data.* Retrieved from http://nwis.waterdata.usgs.gov/al/nwis/qwdata.

APPENDICES

APPENDIX A

Answers	Count	Percentage
I live or own property in Upper Shades Creek	41	67.21%
I work in Upper Shades Creek	18	29.51%
I use Upper Shades Creek for recreation	39	63.93%
I live or own property in Lower Shades Creek	1	1.64%
I work in Lower Shades Creek	4	6.56%
I use Lower Shades Creek for recreation	8	13.11%
I live or own property in Cooley Creek/Mud Creek	1	1.64%
I work in Cooley Creek/Mud Creek	1	1.64%
I use Cooley Creek/Mud Creek for recreation	0	0%
Other	3	4.92%
		Answered: 59 Skipped: 2

Answered: 59 Skipped: 2

In a few words, what does Shades Creek mean to you?

ShadesCreek - PublicOpinionSurvey

house	adulthood	respite	time	backbone	species	public (emps (green	distress.	walking.	Clower clo	ean
EXIDERIO trib suite	CIICES Iocal	W	at	PF here	catch adwaters	ing	grea		resource It's	Beautiful feed		ersity
enviro	nmental					oppo	rtun	II		Recreating	history	issues
good rec	full health reationa	ı G		E	N N	<i>ild</i>	lif	B	quality	y playi	ng	family preserved
com	muni	ty h	eal	ITV '	^{».} blue	Asset	out	door	life	Shad	uppo BS ^{Daily}	part) flora
trails	Home stream		Iral	relax	re	Cľ	H		ON	Sour	' Ce dra	inage
River	wat	erch	hei	heips _f Fun Iov	ishes P	nnoi	'tar		e. hat	nitat	ecosystem	world
Jemison		WOR	derful	run ivv	city					oniov feet	ool education	preserve
possible.	Cahal	10	onnect it.	potenti	al means	creek.	hai	rt ^{soi} Irew	soul due	GIIJU y .	safe	cultural
leisure	space int	teresting	Refreshing	enjoys na	ture metro	contributio	n e	JI U W	sustainabi	lity Tremend	ious Biri	AINGHAM

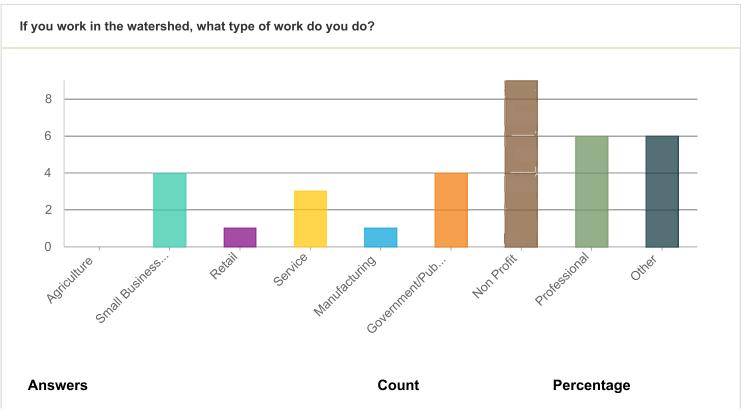
Word	Count
creek	8
water	7
recreation	7
wildlife	5
beauty	5
habitat	4
source	4
life	4
Shades	4
important	4
natural	4
watershed	4
Asset	3
community	3
quality	3
opportunity	3
part	3

https://survey123.arcgis.com/surveys/57b584ba9d654dea98a3288859600bc7/analyze?position=0.using_the_map_above_as_a_guide_

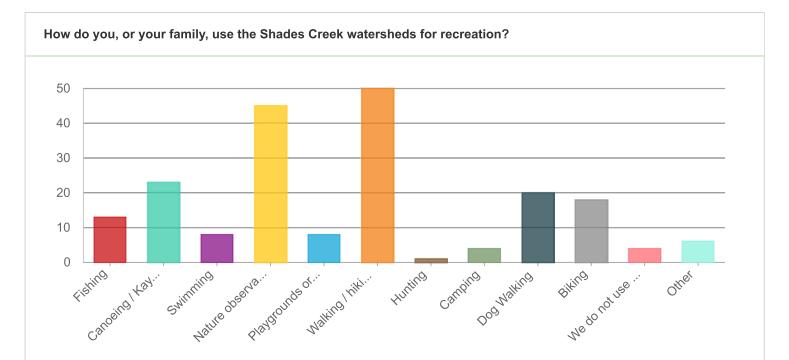
catching	3
playing	3
history	3
great	3
helps	2
me.	2
vital	2
area	2
blue	2
Home	2
resource	2
outdoor	2
love	2
wonderful	2
potential	2
Beautiful	2
recreational	2
environmental	2
creek.	2
ecosystem	2
grew	2
upper	2
trails	2
experiences	2
Fun	2
biodiversity	2

.2/2020	Shadescreek - FublicOpinionSurvey	
enjoy.	2	
drainage	2	
education	2	
Cahaba	2	
River	2	
contribution	1	
life.	1	
Recreating	1	
relax	1	
connect	1	
nature	1	
distress.	1	
respite	1	
city	1	
sustainability	1	
Tremendous	1	
BIRMINGHAM	1	
metro	1	
preserved	1	
headwaters	1	
green	1	
backbone	1	
flows	1	
Jemison	1	
Park	1	
family	1	

/	2020 Shadesc	steek - FublicOpinionSulvey
	enjoys	1
	walking.	1
	stream	1
	clean	1
	possible.	1
	Refreshing	1
	undeveloped	1
	space	1
	historically	1
	interesting	1
	beautiful!	1
	leisure	1
	preserve	1
	world	1
	cultural	1
	historic	1
	areas;	1
	preservation	1
	wetlands	1
	(lower	1
	part)	1
	public	1
	Meaningful	1
	Greenspace	1
	protects	1
	providing	1

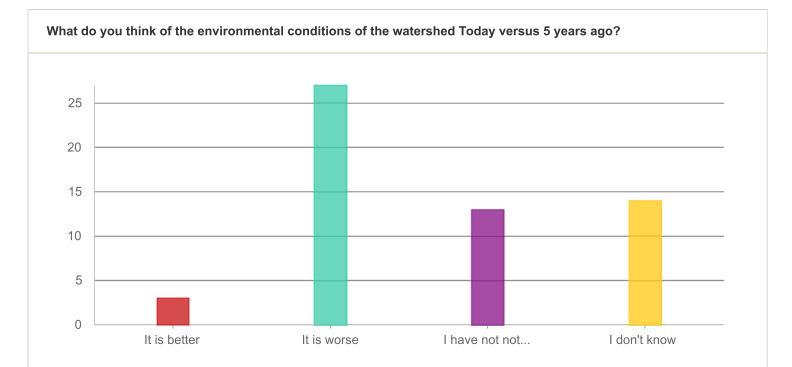

22/2020	Shadescreek - FublicOpinionSurvey	
cooling	1	
temps	1	
climate	1	
change	1	
sense	1	
being.	1	
moving	1	
gallery	1	
greenery	1	
childhood	1	
adulthood	1	
son's	1	
childhood.	1	
place	1	
escape	1	
to.	1	
sounds	1	
good	1	
soul	1	
abused	1	
asset.	1	
lťs	1	
local	1	
flora	1	
animals	1	
represents	1	

unique	1	
biodiverse	1	
perspectives.	1	
means	1	
children	1	
tadpoles.	1	
walk	1	
birdwatching	1	
valuable	1	
preserved.	1	
crawfish	1	
treasure	1	
picking	1	
balckberries	1	
banks	1	
tributaries.	1	
adult	1	
enjoy	1	
spending	1	
time	1	
walking	1	
parallel	1	
it.	1	
creeks	1	
feed	1	
crayfish	1	

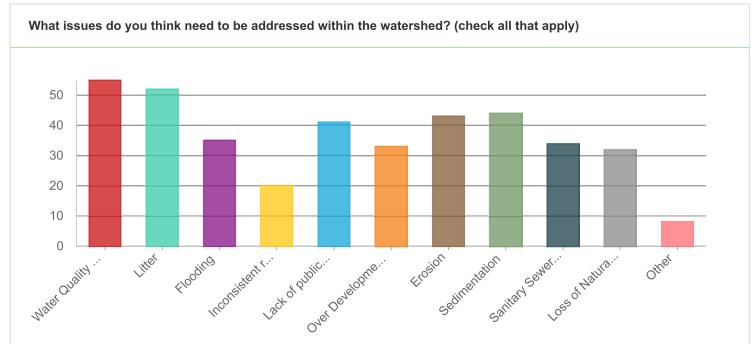

formative	1	
greatly	1	
cherish	1	
fishing	1	
impaired	1	
lost	1	
resource.	1	
activities	1	
Enhances	1	
fostering	1	
house	1	
hundred	1	
feet	1	
Emotional	1	
well-being	1	
creating	1	
memories	1	
family.	1	
Defines	1	
landscape	1	
Daily	1	
aesthetic	1	
benefit	1	
safe	1	
obligation	1	
Cahaba's	1	

largest	1
trib	1
herons	1
small	1
treated	1
ditch.	1
tributary	1
recover	1
urban	1
impact.	1
Amenity	1
drinking	1
primary	1
indicator	1
&	1
civic	1
awareness.	1
microcosm	1
greater	1
environment	1
barometer	1
health	1
tool	1
recreation.	1
shows	1
issues	1

unfettered	1	
development.	1	
lovely	1	
support	1	
full	1	
suite	1	
aquatic	1	
species	1	
fishes	1	
missing	1	
due	1	
destruction.	1	
accessible	1	
areas	1	
		Answered: 48 Skipped: 13

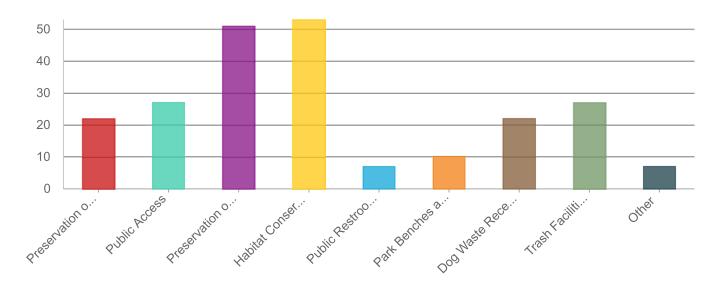


Agriculture 0 0% 1 Small Business Owner 4 6.56% 1 Retail 1 1.64% 1 Service 3 4.92% 1 Manufacturing 1 1.64% 1 Government/Public Sector 4 6.56% 1 Non Profit 9 14.75% 1 Other 6 9.84% 1 Chrest: 25 Skippet: 32 25.55% 25.55%			
Retail11.64%Service34.92%Manufacturing11.64%Government/Public Sector46.56%Non Profit914.75%Professional69.84%Other69.84%	Agriculture	0	0%
Service34.92%Manufacturing11.64%Government/Public Sector46.56%Non Profit914.75%Professional69.84%Other69.84%	Small Business Owner	4	6.56%
Manufacturing11.64%Government/Public Sector46.56%Non Profit914.75%Professional69.84%Other69.84%	Retail	1	1.64%
Government/Public Sector46.56%Non Profit914.75%Professional69.84%Other69.84%	Service	3	4.92%
Non Profit914.75%Professional69.84%Other69.84%	Manufacturing	1	1.64%
Professional 6 9.84% Other 6 9.84%	Government/Public Sector	4	6.56%
Other 6 9.84%	Non Profit	9	14.75%
	Professional	6	9.84%
Answered: 29 Skipped: 3	Other	6	9.84%
			Answered: 29 Skipped: 32

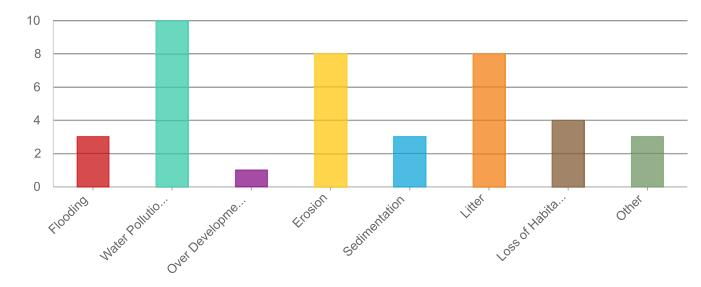


Answers	Count	Percentage
Fishing	13	21.31%
Canoeing / Kayaking	23	37.7%
Swimming	8	13.11%
Nature observation	45	73.77%

Playgrounds or ball fields	8	13.11%
Walking / hiking	50	81.97%
Hunting	1	1.64%
Camping	4	6.56%
Dog Walking	20	32.79%
Biking	18	29.51%
We do not use the watershed for recreational use	4	6.56%
Other	6	9.84%
		Answered: 59 Skipped: 2


Answers	Count	Percentage
It is better	3	4.92%
It is worse	27	44.26%
I have not noticed any change	13	21.31%
l don't know	14	22.95%
		Answered: 57 Skipped: 4

Answers	Count	Percentage
Water Quality / Pollution	55	90.16%
Litter	52	85.25%
Flooding	35	57.38%
Inconsistent regulations	20	32.79%
Lack of public education / awareness	41	67.21%
Over Development / Urbanization	33	54.1%
Erosion	43	70.49%
Sedimentation	44	72.13%
Sanitary Sewer Overflows	34	55.74%
Loss of Natural Areas	32	52.46%
Other	8	13.11%
		Answered: 59 Skipped: 2


Answered: 59 Skipped: 2

What do you think is needed in the Shades Creek Watershed?

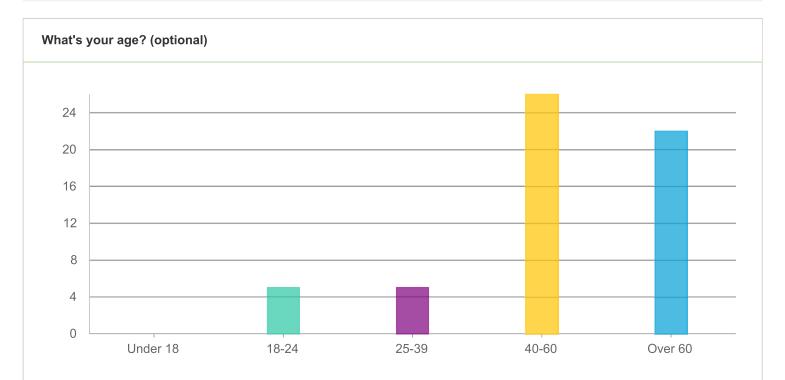
Answers	Count	Percentage
Preservation of Historic Sites	22	36.07%
Public Access	27	44.26%
Preservation of Natural Areas	51	83.61%
Habitat Conservation	53	86.89%
Public Restrooms	7	11.48%
Park Benches and Picnic Tables	10	16.39%
Dog Waste Receptacles	22	36.07%
Trash Facilities	27	44.26%
Other	7	11.48%
		Answered: 59 Skipped: 2

Select the issue the word below that best matches the issue noted on the map.

Answers	Count	Percentage
Flooding	3	4.92%
Water Pollution	10	16.39%
Over Development	1	1.64%
Erosion	8	13.11%
Sedimentation	3	4.92%
Litter	8	13.11%
Loss of Habitat	4	6.56%
Other	3	4.92%
		Answered: 40 Skipped: 21

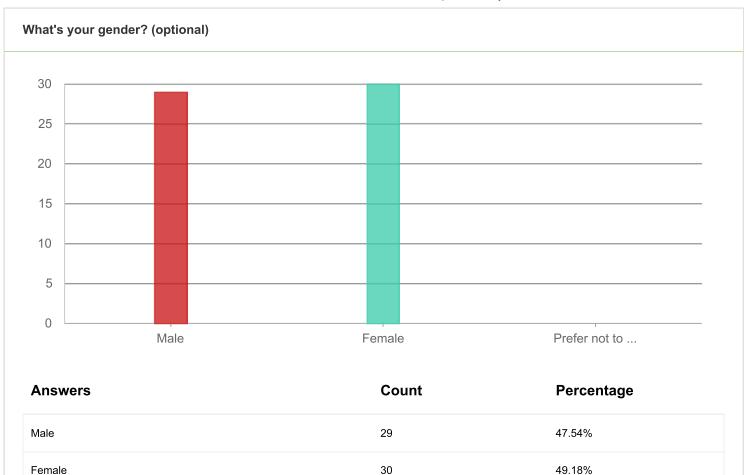
Other comments.

The word cloud requires at least 20 answers to show.


Word	Count
Shades	4
creek	4
erosion	4

2,2020		
litter	4	
Flooding	2	
creek.	2	
dismayed	1	
over-zealous	1	
"weeding"	1	
happy	1	
improvements	1	
experienced	1	
1980s.	1	
West	1	
Homewood	1	
Park	1	
tributary	1	
Unable	1	
definition	1	
map	1	
pinpoint	1	
areas	1	
part	1	
original	1	
channel.	1	
preserved	1	
-	1	
filled	1	
invasive	1	

2/2020	Shadescreek - PublicOpinionSurvey	
plant	1	
species.	1	
Spotted	1	
Salamanders	1	
breed	1	
here.	1	
Smell	1	
trash	1	
pollution	1	
dumping	1	
book	1	
Samford	1	
installed	1	
rock	1	
vanes	1	
address	1	
appears	1	
moved	1	
downstream	1	
site	1	
map.	1	
sewer	1	
leak	1	
upstream	1	
collects	1	
branches	1	


2/2020	Shadescreek - PublicOpinionSurvey	
bushes	1	
alongside	1	
sewage.	1	
Kids	1	
play	1	
re-engagng	1	
280/cahaba	1	
intersection	1	
pain	1	
point	1	
reasons	1	
stretch	1	
too.	1	
disappointing.	1	
terrible	1	
watershed	1	
Target	1	
Columbiana	1	
Homewood.	1	
Channel	1	
opportunity	1	
GI	1	
&	1	
storage.	1	
Surrounding	1	
area	1	

flood	1	
development	1	
upstream.	1	
Potential	1	
green	1	
gateway	1	
Irondale.	1	
		Answered: 14 Skipped: 47

Answers	Count	Percentage
Under 18	0	0%
18-24	5	8.2%
25-39	5	8.2%
40-60	26	42.62%
Over 60	22	36.07%
		Answered: 58 Skipped: 3

Prefer not to answer

0

0%

Answered: 59 Skipped: 2

APPENDIX B

Alabama Inventory List

The Rare, Threatened, & Endangered Plants & Animals of Alabama

August 2019

Alabama Natural Heritage Program®

TABLE OF CONTENTS

ALABAMA NATURAL HERITAGE PROGRAM®	
CHANGES FROM ALNHP TRACKING LIST OF AUGUST 2017	
DEFINITION OF HERITAGE RANKS	
DEFINITIONS OF FEDERAL & STATE LISTED SPECIES STATUS	
VERTEBRATES	
Birds	
Mammals	
Amphibians	
Reptiles	
Lizards, Snakes, and Amphisbaenas	
Turtles and Tortoises Fishes	
Ray-finned Fishes	
Lampreys	
INVERTEBRATES	
Bivalves (Clams & Mussels)	
Gastropods (Slugs and Snails)	
Freshwater Snails	
Terrestrial Snails	
Crustaceans	
Spiders, Scorpions, Pseudoscorpions, Harvestmen, Mites	
Hexapods - Diplurans, Springtails, and Proturans True Insects	
Beetles	
True Flies	
Mayflies	
Butterflies and Moths	
Dragonflies and Damselflies	
Grasshoppers, Locusts, and Crickets	
Stoneflies Millipedes	
Terrestrial and Freshwater Worms	
VASCULAR PLANTS	
Ferns & Relatives Ferns	
Succulent Ferns	
Whiskferns	
Quillworts & Spike-moss	
Clubmosses	
Horsetails	
Monocots	
Dicots Conifers	
NON-VASCULAR PLANTS	
Mosses Liverworts	
EXTINCT SPECIES THAT ONCE OCCURRED IN ALABAMA	
Birds	
Ray-finned Fishes Bivalves (Clams & Mussels)	
Gastropods (Snails & Slugs)	
· · · · · · · · · · · · · · · · · · ·	

Alabama Natural Heritage Program®

Keeping Track of Alabama's Natural Heritage

The purpose of the Alabama Natural Heritage Program® (ALNHP) is to provide the best available scientific information on the biological diversity of Alabama to guide conservation action and promote sound stewardship practices. Established by The Nature Conservancy in 1989, it is one of a network of such programs collectively known as the Natural Heritage Network, which is represented by its membership organization NatureServe. NatureServe works to aggregate data from individual Network Programs and is dedicated to the furtherance of the Network and the application of Heritage data to biodiversity conservation.. The mission of Natural Heritage Programs is to collect and manage data about the status and distribution of species and ecosystems of conservation concern. Natural heritage programs have become the recognized source for the most complete and detailed information on rare and endangered species and threatened ecosystems, relied upon by government agencies, corporations, and the conservation community alike. Today the NatureServe network includes 74 independent natural heritage programs and conservation data centers throughout the United States, Canada, Latin America, and the Caribbean. Most heritage programs (or conservation data centers) are housed within state or provincial government agencies, while some reside within universities or non-governmental organizations. ALNHP is administered through the Auburn University Museum of Natural History, Department of Biological Sicences. ALNHP provides the following services: biodiversity data management, inventory, biological surveys, biological monitoring, site prioritization, conservation planning, Geographic Information System services, spatial modeling, and land management expertise.

Natural Heritage Programs have three broad functions: to collect information on the status and distribution of species and natural communities, to manage this information in a standardized way, and to disseminate this information to a wide array of users. Natural Heritage Programs use a standardized information management system to track biodiversity data including taxonomy, distribution, population trends, habitat requirements, relative abundance, quality, condition, and viability. Programs also track non-biological information including land ownership type, land-use and management, distribution of protected areas, and threats to species or their habitat.

One of the important tasks each heritage program performs is the regular compilation of a "Rare Species Inventory List" for the state that ranks by priority each element based on the number and quality of occurrences. In general, species are listed in alphabetical order (by Order, Family, Genus) within the taxonomic groups. The only exception is birds where the order in which the species are presented follows the American Ornithologists' Union's checklist of North American birds. Although the inventory list is compiled using the best scientific information available at the time, there is always more current information available on a particular species, distribution and/or status. We would appreciate any new information on the location, abundance, or rarity of any of the species on the following list. Please send your comments to the appropriate staff member.

Scientific classification, common names, and order in which species are presented follow AOU (1998) and Chesser et al. (2015) for birds, Best and Dusi (2014) for mammals, Boschung and Mayden (2004) and Mettee et al (1996) for fish, and Williams et al. (2008) for mussels. Scientific and common names for reptiles and amphibians follow that of Crother (2012), but the order in which species are presented follow that used by Mirachi (2004). Other taxon are presented alphabetically.

Citation: Alabama Natural Heritage Program[®]. 2019. *Alabama Inventory List: the Rare, Threatened and Endangered Plants & Animals of Alabama*. Alabama Natural Heritage Program[®], Auburn University, Alabama.

Staff Directory, Resources, & Partners

Auburn University Museum of Natural History

The mission of the Auburn University Museum of Natural History is to conduct biodiversity research, preserve and document our region and planet's biodiversity, and to lead and promote activities related to natural history education and outreach for Auburn University and all citizens of the state of Alabama. Our vision is to emerge as the primary repository for all natural history collections currently maintained at Auburn University and to function as a center of excellence for biodiversity research, education, and outreach. We will capitalize on strengths of the biodiversity heritage collections in our care and the vast organismal knowledgebase of the curators and staff to establish a gateway through which all segments of society can come discover the natural sciences and appreciate the relevance of biodiversity to human health and quality of life. We will preserve and document the rich natural heritage of Alabama while concurrently creating opportunities for students and teachers from regional schools, the general public, students at Auburn University, and researchers to explore our planet's biodiversity. We seek to inspire an appreciation of nature and the environment so that we might better conserve it for future generations.

NatureServe

NatureServe is a non-profit conservation organization whose mission is to provide the scientific basis for effective conservation action. NatureServe represents an international network of biological inventories—known as natural heritage programs or conservation data centers operating in all 50 U.S. states, Canada, Latin America and the Caribbean. NatureServe's three organizational goals are:

- Help make biodiversity a mainstream consideration in all significant conservation and natural resource management decisions by making it simple for conservationists, government agencies, corporations, and landowners to access and use high-quality biodiversity information.
- (2) Advance our scientific resources and information technology systems in order to meet the needs of our clients and partners.
- (3) Strengthen our organizational effectiveness and capacity and better leverage the power of the NatureServe network to inform conservation action at local, regional, national, and international scales.

Heritage Staff Directory

Jonathan Armbruster, Ph.D. Director (334) 844-9261 armbrjw@auburn.edu

Katelyn Lawson, Ph.D. GIS Analyst (334) 844-5017 klawson@auburn.edu

Jim Godwin Aquatic Zoologist (334) 844-5020 jcg0001@auburn.edu

Al Schotz Botanist/Community Ecologist (334) 844-5019 ars0002@auburn.edu

> Toni Bruner Outreach Coordinator (334) 844-4132 teb0042@auburn.edu

Location

Alabama Natural Heritage Program 1090 S. Donahue Drive Auburn University, AL 36849 Fax: (334) 844-4462

> Websites ALNHP: http://www.alnhp.org

NatureServe: http://www.natureserve.org

Auburn University Museum of Natural History: http://aumnh.org/

Changes From ALNHP Tracking List Of August 2017

I. Taxa Removed From ALNHP Tracking List

Scientific Name	Paason
Scientific Name	Reason
Flowering Plants	
Coreopsis gladiata	Too common to be on tracking list
Croomia pauciflora	Too common to be on tracking list
Frasera caroliniensis	Too common to be on tracking list
Graptemys nigrinoda delticola	Merged subspecies and is now too common to be on list
Graptemys nigrinoda nigrinoda	Merged subspecies and is now too common to be on list
Isoetes melanopoda	Too common to be on tracking list
Minuartia godfreyi	Incorrectly identified
Ophioglossum engelmannii	Too common to be on tracking list
Palhinhaea cernua	Too common to be on tracking list
Scutellaria saxatilis	Incorrectly identified
Spiranthes floridana	No record of this species occurring in Alabama.
Symphyotrichum drummondii var. texanum	No record of this variety occurring in Alabama.
Thelypteris quadrangularis	Too common to be on tracking list
Vitis rotundifolia var. munsoniana	Too common to be on tracking list
Zephyranthes atamasca var. treatiae	No record of this variety occurring in Alabama.

II. Taxa Added to ALNHP Tracking List

Scientific Name	Common Name
Birds	
Calidris canutus	Red Knot
Fishes	
Acantharchus pomotis	mud sunfish
Noturus crypticus	chucky madtom
Freshwater Mussels	
Pleurobema beadleianum	Mississippi pigtoe
Strophitus williamsi	flatwoods creekshell
Freshwater Snails	
Fontigens nickliniana	watercress snail
Crayfishes	
Cambarellus rotatus	twisted dwarf crayfish
Flowering Plants	
Ampelaster carolinianus	Carolina aster
Arnica acaulis	Leopardsbane
Callirhoe papaver	woods poppy-mallow

Ceanothus microphyllus	little-leaf buckbrush
Coelorachis tessellate	lattion jointgrass
Erythronium umbilicatum ssp. monostolum	dimpled trout-lily
Geum vernum	spring avens
Hymenocallis choctawensis	panhandle spider lily
Hypericum microsepalum	Flatwoods St. John's-wort
Lygodesmia aphylla	rose rush
Lysimachia lewisii	Lewis's yellow loosestrife
Paronychia argyrocoma	silvery nailwort
Penstemon kralii	Kral's beardtongue
Pterocaulon virgatum	wand blackroot
Pycnanthemum nudum	Coastal Plain mountain mint
Ranunculus longirostris	eastern white water crowfoot
Rhododendron colemanii	Red Hills azalea
Spiraea tomentosa	hardhack
Symphyotrichum simmondsii	Simmonds' aster
Viburnum ashei	Ashe's arrowwood
Mosses	
Fontinalis welchiana	difficult moss
III. Taxa with Taxonomic or Non	nenclatural Changes
Old Name	New Name
Freshwater Mussels	
Anodontoidas radiatus	Strophitus radiat

Freshwater Mussels	
Anodontoides radiatus	Strophitus radiatus
Fusconaia rotulata	Reginaia rotulata
Obovaria jacksoniana	Obovaria arkansasensis
Freshwater Snails	
Rhodacme elatior (domed ancylid)	Rhodacmea cahawbensis (Cahaba ancylid)
Rhodacme filosa	Rhodacmea filosa
Rhodacme hinkleyi	Rhodacmea hinkleyi
Crayfishes	
Fallicambarus burrisi	Creaserinus burrisi
Fallicambarus byersi	Creaserinus byersi
Fallicambarus danielae	Creaserinus danielae
Fallicambarus fodiens	Creaserinus fodiens
Fallicambarus oryktes	Creaserinus oryktes
Flowering Plants	
Amphianthus pusillus	Gratiola pusilla

Andropogon gyrans var. stenophyllus	Andropogon perangustatus
Dicerandra linearifolia	Dicerandra fumella
Graptemys nigrinoda delticola	Graptemys nigrinoda
Graptemys nigrinoda nigrinoda	Graptemys nigrinoda
Leptopus phyllanthoides	Phyllanthopsis phyllanthoides
Lesquerella lyrate	Paysonia lyrate
Physalis carpenteri	Calliphysalis carpenteri
Spigelia gentianoides var. alabamensis	Spigelia alabamensis
Spigelia gentianoides var. gentianoides	Spigelia gentianoides
Thelypteris burksiorum	Stegnogramma burksiorum
Creamflower Tick-trefoil	Cream Tick-trefoil

IV. Taxa with Heritage Conservation Status Changes

Global Rank Changes

Animals

Taxa	Old <u>Rank</u>	New Rank
Reptiles		
Graptemys nigrinoda	G3T2Q	G4
Amphibians		
Necturus alabamensis	G2	G1
Plants		
Taxa	Old <u>Rank</u>	New <u>Rank</u>
Delphinium alabamicum	G2	G3
Desmodium ochroleucum	G2	G2G3
Helianthus verticillatus	G1Q	G1
Phlox pulchra	G2	G1
Spigelia alabamensis	G1T1	G1
Spigelia gentianoides	G1T1	G1
State Rank Changes		
Animals		
Taxa	Old <u>Rank</u>	New <u>Rank</u>
Reptiles		
Graptemys nigrinoda	S2S3	S4
Amphibians		
Necturus alabamensis	S2	S 1
Fishes		
Cyprinella callitaenia	S 3	S 1

Sander sp. cf. vitreus	S 3	S 1
Freshwater Mussels		
Dromus dromas	S 1	SX
Lemiox rimosus	S 1	SX
Freshwater Snails		
Elimia boykiniana	SNR	S 2
Rhodacmea hinkleyi	S 2	SX
Plants		
Actaea rubifolia	SH	S 1
Arnoglossum sulcatum	S2S3	S 3
Bulbostylis warei	SH	S 1
Celastrus scandens	S 2	S 1
Desmodium ochroleucum	S1S2	S 2
Dryopteris celsa	S 1	S2
Epidendrum magnoliae	S2	S 3
Eurybia eryngiifolia	S 2	S 1
Galactia floridana	SH	S 1
Lilium superbum	S2	S 3
Lobelia boykinii	S1S2	S 1
Mikania cordifolia	S1	S 2
Nestronia umbellula	S2	S 3
Oenothera heterophylla	SH	S 2
Phlox pulchra	S2	S 1
Pityopsis oligantha	S1	S 2
Quercus arkansana	S2	S 3
Stylisma aquatica	S 1	S2
Tephrosia mohrii	S1S2	S1?

IV. Taxa with Federal Status Changes

<u>Taxa</u> Mammals	Old <u>Status</u>	New <u>Status</u>	Reason
Perimyotis subflavus	PET	UR	USFWS issued a 90-day finding on 27 December 2017 that listing may be warranted and initiated a status review to determine if listing is warranted.
Amphibians			
Necturus alabamensis	C	LE	USFWS designated as endangered effective 2 February 2018.
Turtles			

<u>Taxa</u> Graptemys barbouri	Old <u>Status</u> UR	New <u>Status</u>	<u>Reason</u> USFWS determined that listing is not warranted (5 October 2017).
Fishes			
Etheostoma brevirostrum	UR		USFWS determined that listing is not warranted (4 October 2017).
Etheostoma trisella	UR	LT	USFWS listing as threatened on 28 December 2018.
Freshwater Snails			
Leptoxis compacta	PET	UR	USFWS issued a 90-day finding on 27 December 2017 that listing may be warranted and initiated a status review to determine if listing is warranted.

VI. Taxa with Counties of Occurrence Added

Taxa	Counties Added
Mammals	
Spilogale putorius	Baldwin, Butler, Clay, Chambers, Cleburne, Coosa, Covington, Crenshaw, Dale, DeKalb, Fayette, Jefferson, Lauderdale, Lawrence, Macon, Tallapoosa, Winston
Amphibians	
Amphiuma means	Washington
Cryptobranchus alleganiensis	Jackson
Fishes	
Sander sp. cf. vitreus	Clay, Coosa
Flowering Plants	
Agalinis heterophylla	Bullock, Elmore, Montgomery
Agastache nepetoides	Madison
Agrimonia incisa	Bullock, Covington, Geneva, Pike
Arnoglossum sulcatum	Conecuh, Dale, Monroe, Pike
Canna flaccida	Geneva, Houston
Carex acidicola	Bibb, Lee
Coreopsis nudata	Baldwin
Crataegus ashei	Montgomery
Crataegus triflora	Montgomery
Cypripedium candidum	Lowndes
Desmodium ochroleucum	Madison
Dicerandra fumella	Barbour Butler, Conecuh, Crenshaw, Dale, Escambia, Geneva
Dryopteris celsa	Cherokee, Crenshaw, Jefferson, Lawrence, Limestone, Marion Montgomery, Walker

Taxa	Counties Added
Dyschoriste oblongifola	Houston
Enemion biternatum	Conecuh
Epidendrum magnoliae	Barbour, Butler, Coffee, Geneva, Henry
Hedeoma drummondii	Lowndes
Hypericum nudiflorum	Butler, Crenshaw, Wilcox
Isoetes appalachiana	Butler, Conecuh, Tallapoosa
Kalmia hirsuta	Houston
Lilium iridollae	Geneva
Lilium michiganense	Colbert, Dekalb, Franklin, Lawrence, Lowndes, Madison, Pickens
Lilium superbum	Baldwin, Bullock, Chilton, Choctaw, Crenshaw, Escambia, Macon, Marengo, Randolph, Russell, Shelby, Sumter, Tallapoosa
Macranthera flammea	Crenshaw
Mikania cordifolia	Clarke, Houston, Mobile
Nestronia umbellula	Pike
Oenothera heterophylls	Dallas, Greene
Orobanche uniflora	Bullock
Pachysandra procumbens	Bullock, Lowndes
Penstemon multiflorus	Covington, Escambia
Pieris phillyreifolia	Houston
Pinus serotina	Pike
Platanthera nivea	Conecuh
Rhamnus lanceolata	Butler
Rhododendron austrinum	Baldwin, Butler, Conecuh, Crenshaw, Dale, Escambia, Mobile, Monroe
Rudbeckia mollis	Houston
Schoenolirion croceum	Madison
Selaginella arenicola ssp. riddellii	Geneva, Wilcox
Stylisma aquatica	Geneva
Symphyotrichum pratense	Russell
Symphyotrichum sericeum	Colbert
Thelypteris ovata	Conecuh, Houston, Washington
Utricularia floridana	Houston
Veratrum woodii	Dale
Viola canadensis	Butler, Lowndes
Warea sessilifolia	Coffee, Dale, Henry, Mobile
Zanthoxylum americanum	Montgomery

VII. Taxa with Counties of Occurrence Deleted

Counties Deleted

<u>Taxa</u>

Flowering Plants

Astragalus canadensis	Geneva
Isoetes appalachiana	Covington
Pachysandra procumbens	Butler
Rhexia aristosa	Choctaw
Rudbeckia mollis	Bibb, Tuscaloosa

Definition of Heritage Ranks

The Alabama Natural Heritage Program uses the Heritage ranking system developed by NatureServe. Each species is assigned two ranks; one representing its range-wide or global status (G rank), and one representing its status in Alabama (S rank). Species with a rank of 1 are most critically imperiled; those with a rank of 5 are most secure. Rank numbers may be combined when there is uncertainty over the status, but ranges cannot skip more than one rank (e.g., an element may be given a G-rank of G2G3, indicating global status is somewhere between imperiled and vulnerable).

Global Ranking System

- G1 Critically Imperiled At very high risk of extinction due to extreme rarity (often 5 or fewer populations), very steep declines, or other factors.
- G2 Imperiled At high risk of extinction due to very restricted range, very few populations (often 20 or fewer), steep declines, or other factors.
- G3 Vulnerable At moderate risk of extinction due to a restricted range, relatively few populations (often 80 or fewer), recent and widespread declines, or other factors.
- G4 Apparently Secure Uncommon but not rare; some cause for long-term concern due to declines or other factors.
- G5 Secure Common; widespread and abundant.
- GX Presumed Extinct (species) Not located despite intensive searches and virtually no likelihood of rediscovery.
 Eliminated (ecological communities) – Eliminated throughout its range, with no restoration potential due to extinction of dominant or characteristic species.
- GH Possibly Extinct (species)/ Eliminated (ecological communities and systems) Known from only historical occurrences but still some hope of rediscovery There is evidence that the species may be extinct or the ecosystem may be eliminated throughout its range, but not enough to state this with certainty.
- GU Unrankable Currently unrankable due to lack of information or due to substantially conflicting information about status or trends.
- GNR Not ranked to date.
- G#T# Infraspecific Taxon (trinomial) The status of infraspecific taxa (subspecies or varieties) are indicated by a "T-rank" following the species' global rank. Rules for assigning T-ranks follow the same principles outlined above for global conservation status ranks. A T-rank cannot imply the subspecies or variety is more abundant than the species as a whole-for example, a G1T2 cannot occur. At this time, the T rank is not used for ecological communities.

State Ranking System

- S1 Critically Imperiled Critically imperiled in Alabama because of extreme rarity (5 or fewer occurrences of very few remaining individuals or acres) or because of some factor(s) making it especially vulnerable to extirpation from Alabama.
- S2 Imperiled At high risk of extirpation because of rarity - very restricted range, very few populations, steep declines, or other factors making it very vulnerable to extirpation from Alabama.
- S3 Vulnerable Rare or uncommon in Alabama at moderate risk of extirpation due to a restricted range, relatively few populations, recent and widespread declines, or other factors.
- S4 Apparently Secure Apparently secure in Alabama, may be uncommon, but not rare. May have some cause for long-term concern due to declines or other factors.
- S5 Secure Demonstrably secure in Alabama; common, widespread, and abundant in the state
- SX Presumed Extirpated Species or community is believed to be extirpated from Alabama. Not located despite intensive searches of historical sites and other appropriate habitat, and virtually no likelihood that it will be rediscovered.
- SH Historical (Possibly Extirpated) Species or community occurred historically in Alabama, and there is some possibility that it may be rediscovered. Its presence may not have been verified in the past 20-40 years. A species or community could become SH without such a 20-40 year delay if the only known occurrences in Alabama were destroyed or if it had been extensively and unsuccessfully looked for. The SH rank is reserved for species or communities for which some effort has been made to relocate occurrences, rather than simply using this status for all elements not known from verified extant occurrences.
- SNR Unranked State conservation status not yet assessed.
- SNA A conservation status rank is not applicable because the species is not a suitable target for conservation activities in the state.¹
- SU Unrankable Currently unrankable due to lack of information or due to substantially conflicting information about status or trends.

Variant Ranks and Rank Modifiers

- G#G# Range Rank A numeric range rank (e.g., G2G3) is used to indicate the range of uncertainty in the status of a species or community (e.g., an element may be given a G-rank of G2G3, indicating global status is somewhere between imperiled and vulnerable). Ranges cannot skip more than one rank (e.g., GU should be used rather than G1G4). Also applies to state ranks (e.g., S2S3)
- HYB Hybrid
- Q Questionable taxonomy Taxonomic distinctiveness of this entity at the current level is questionable; resolution of this uncertainty may result in change from a species to a subspecies or hybrid, or the inclusion of this taxon in another taxon, with the resulting taxon having a lower-priority conservation priority.
- ? Inexact Numeric Rank Denotes inexact numeric rank (e.g., G2?)

Breeding Status Qualifiers²

- B Breeding Conservation status refers to the breeding population of the species in the state. Regularly occurring, usually migratory and may be present only during the breeding season.
- N Nonbreeding Conservation status refers to the nonbreeding population of the species in the state. Regularly occurring, usually migratory and may not breed in Alabama; this category includes migratory birds, bats, sea turtles, and cetaceans.
- M Migrant Migrant species occurring regularly on migration at particular staging areas or concentration spots where the species might warrant conservation attention. Conservation status refers to the aggregating transient population of the species in the nation or state/province.

¹ A conservation status rank may be not applicable for some species, including long distance aerial and aquatic migrants, hybrids without conservation value, and non-native species or ecosystems, for several reason

² A breeding status is only used for species that have distinct breeding and/or non-breeding populations in the state. A breeding-status S-rank can be coupled with its complementary non-breeding-status S-rank if the species also winters in the state. In addition, a breeding-status S-rank can also be coupled with a migrant-status S-rank if, on migration, the species occurs regularly at particular staging areas or concentration spots where it might warrant conservation attention. Multiple conservation status ranks (typically two, or rarely three) are separated by commas (e.g., S2B,S3N or SHN,S4B,S1M).

For more information regarding Conservation Status Ranks, see http://www.natureserve.org/explorer/ranking.htm#globalstatus

Definitions of Federal & State Listed Species Status

Federal - U.S. Fish and Wildlife Service

The U.S. Endangered Species Act (U.S. ESA) is the primary legislation that affords federal legal protections to threatened and endangered species in the United States, and is administered by the U.S. Fish and Wildlife Service (USFWS) (<u>http://endangered.fws.gov/</u>) and U.S. National Marine Fisheries Service (NMFS) (<u>http://www.nmfs.noaa.gov/prot_res/overview/es.html</u>). As defined by the Act, endangered refers to species that are "in danger of extinction within the foreseeable future throughout all or a significant portion of its range," while threatened refers to "those animals and plants likely to become endangered within the foreseeable future throughout all or a significant portion of their ranges." Plant species and varieties (including fungi and lichens), animal species and subspecies, and vertebrate animal populations are eligible for listing under the Act. Status under the U.S. Endangered Species Act in data provided by ALNHP is based on formal notices published by USFWS or NMFS in the Federal Register. Where names used by the USFWS differ from those used by ALNHP, ALNHP records include notes indicating under what name the USFWS lists the species and how that relates to the name used by ALNHP.

ESA Status Definitions

LE – Listed Endangered: A species in danger of extinction throughout all or a significant portion of their range.

LT – Listed Threatened: A species likely to become endangered within the foreseeable future throughout all or a significant portion of their range.

PE – Proposed Endangered: A species proposed to be listed as endangered.

PT – Proposed Threatened: A species proposed to be listed as threatened.

C-Candidate: A species under consideration for official listing for which there is sufficient information to support listing. The USFWS encourages other agencies to give consideration to such taxa in environmental planning.

XN – Experimental Population, Nonessential: Experimental reintroduced population.

SC – Species of Concern: Species that have not been petitioned or been given Endangered, Threatened, or Candidate status, but have been identified as important to monitor. (An unofficial status with no regulatory rquirements)

UR – Under Review in the Candidate or Petition Process: A species under review in the candidate or petition process. A 90-day finding indicated that listing may be warranted, and a full status review has been initiated to determine if listing is warranted. (An unofficial status with no regulatory requirements)

PET – Petitioned for listing – A species that has been petitioned to be listed as endangered or threatened under the Endangered Species Act. Petition findings by USFWS have not yet been made.

SAT – Similarity of Appearance: A species listed as threatened due to a similarity of appearance to a listed species. Species listed as SAT are not biologically endangered or threatened and are not subject to Section 7 consultation.

State - Alabama Department of Conservation and Natural Resources (ADCNR)

Wildlife & Freshwater Fisheries Division

Alabama does not have a state law equivalent to the federal endangered species act so species do not have regulatory protection as state endangered or threatened species. However, some species do receive regulatory protection through the *Alabama Regulations on Game Fish and Fur Bearing Animals* published annually. These are the primary regulations affording state protection for some species in Alabama, and are administered by the Alabama Department of Conservation and Natural Resources. Copies of these regulations may be obtained from the Division of Wildlife & Freshwater Fisheries, Alabama Department of Conservation & Natural Resources, 64 North Union Street, Montgomery, AL 36104. A digital version of these regulations is available online at http://www.outdooralabama.com/season-and-bag-limits.

State Status Code Definitions

SP – State Protected: Species protected by Regulation 220-2-.92 (Nongame Species Regulation), 220-2-.98 (Invertebrate Species Regulation), 220-2-.26(4) (Protection of Sturgeon), 220-2-.94 (Prohibition of Taking or Possessing Paddlefish), or 220-2-.97 (Alligator Protection Regulation).

PSM – Partial Status Mussels: All mussel species not listed as a protected species under the Invertebrate Species Regulation are partially protected by other regulations of the Alabama Game, Fish, and Fur Bearing Animals Regulations. Regulation 220-2-.104 prohibits the commercial harvest of all but the 11 mussel species for which commercial harvest is legal. Regulation 220-2-.52 prohibits the take, capture, kill, or attempt to take, capture, or kill of any freshwater mussel from Wheeler Lake from Guntersville Dam downstream to the mouth of Shoal Creek and from the upstream end or head of Hobbs Island downstream to Whitesburg Bridge, Pickwick Lake from Wilson Dam downstream to the upper end or head of Seven Mile Island, Wilson Lake from Wheeler Dam downstream to the mouth of Town Creek on the south bank and the mouth of Bluewater Creek on the north bank, and the Cahaba River.

RT – Regulated Turtle: Species for which the Turtle Catcher/Dealer/Farmer Regulation (Regulation 220-2-.142) imposes a limit on the number which can be possessed or size limits.

GA – Game Animal (Managed hunting regulations).

GANOS – Game Animal - No Open Season: Species designated a game animal by Regulation 220-2-.07, but for which there is no open season.

GB – Game Bird (Managed hunting regulations).

GBNOS – Game Bird - No Open Season: Species designated a game bird by Regulation 220-2-.04, but for which there is no open season.

GF – Game Fish (Managed fishing regulations).

GF-HP – Game Fish – Harvest Prohibited: Species designated a game fish by Regulation 220-2-.34, but harvest of the species in the state is prohibited.

CNGF - Commercial or Non-Game Fish (Managed fishing regulations).

State Wildlife Action Plan (SWAP) Status Definitions

In order to receive funds through the Wildlife Conservation and Restoration Program and the State Wildlife Grants Program, Congress charged each state and territory with developing a wildlife action plan. These proactive plans, known technically as "comprehensive wildlife conservation strategies," assess the health of each state's wildlife and habitats, identify the problems they face, and outline the actions that are needed to conserve them over the long term. The wildlife action plans identify a variety of actions aimed at preventing wildlife from declining to the point of becoming endangered, and outline the steps that are needed to conserve wildlife and habitat before they become rarer and more costly to protect. One component of the plan was identifying Species of Greatest Conservation Need (GCN). Species were assigned a status based on the expert opinion of taxa committees. The taxa evaluated for inclusion on the SGCN list were birds, mammals, amphibians, reptiles, fishes, mussels, aquatic snails, and crayfishes.

SWAP Status Code Definitions

- P1 Priority 1/Highest Conservation Concern: taxa critically imperiled and at risk of extinction/extirpation because of extreme rarity, restricted distribution, decreasing population trend/population viability problems, and specialized habitat needs/habitat vulnerability due to natural/human-caused factors. Immediate research and/or conservation action required.
- P2 Priority 2/High Conservation Concern: taxa imperiled because of three of four of the following: rarity; very limited, disjunct, or peripheral distribution; decreasing population trend/population viability problems; specialized habitat needs/habitat vulnerability due to natural/human-caused factors. Timely research and/or conservation action needed.
- EX Extirpated: taxa that historically occurred in Alabama, but are now absent; may be rediscovered in the state, or be reintroduced from populations existing outside the state.
- EXCAU Extirpated/Conservation Action Underway: taxa that historically occurred in Alabama, were absent for a period of time, and currently are being reintroduced, or have a plan for being reintroduced, into the state from populations outside the state.
- Extinct Extinct: taxa that historically occurred in Alabama, but are no longer alive anywhere within their former distribution.

		Global	State	Federal	State	SWAP	
Scientific Name	Common Name	Rank	Rank	Status	Status	Status	
Vertebrates							
CLASS AVES – Bird	S						
ORDER CICONIIFORMES Family Ciconiidae - Storks	5 - Storks						
Mycteria americana	Wood Stork Autauga, Baldwin, Barbour, Bibb Colbert, Conecuh, Covington, C Hale, Houston, Lee, Lowndes, M Perry, Russell, Shelby, Sumter,	Crenshaw, I Macon, Ma	Dallas, Elmor dison, Maren	e, Escambia, go, Mobile, I	Geneva, G	reene,	
	ES - Pelicans, Herons, Ibises	, and Alli	es				
Family Ardeidae - Herons a Botaurus lentiginosus Counties of occurrence:	American Bittern	G4	S3N		SP		
<i>Ixobrychus exilis</i> Counties of occurrence:	Least Bittern Autauga, Baldwin, Barbour, But Lawrence, Lowndes, Macon, M				SP , Jackson, L	P2 Lamar,	
<i>Egretta rufescens</i> Counties of occurrence:	Reddish Egret Baldwin, Mobile	G4	S1B,S3N		SP	P2	
Family Threskiornithidae Ibises and Spoonbills Eudocimus albus White Ibis G5 S2B,S3N SP Counties of occurrence – breeding: Baldwin, Clarke, Covington, Geneva, Houston, Mobile SP Counties of occurrence – foraging or transient: Barbour, Butler, Chilton, Cleburne, Coffee, Conecuh, Crenshaw, Dale, Escambia, Henry, Lowndes, Marshall, Monroe, Montgomery, Russell, Shelby, Sumter, Wilcox, Washington							
Plegadis falcinellus Counties of occurrence:	Glossy Ibis Mobile	G5	S1B,S3N		SP		
	- Screamers, Swans, Geese,	and Duck	KS				
Family Anatidae Swans, Ge Anas fulvigula Counties of occurrence:	Mottled Duck	G4	S2N,S3B		SP	P2	
Anas rubripes Counties of occurrence:	American Black Duck Limestone, Marshall, Morgan	G5	S2B,S5N		SP	P2	
Family Accipitridae - Kites <i>Elanoides forficatus</i>	IES - Hawks, Kites, Eagles, 4 , Eagles, and Hawks Swallow-tailed Kite Autauga, Baldwin, Butler, Choct Geneva, Hale, Marengo, Mobile,	G5 aw, Clarke	S2 , Conecuh, C	-		P2 nbia,	
<i>Circus cyaneus</i> Counties of occurrence:	Northern Harrier Autauga, Baldwin, Calhoun, Che Mobile, Wilcox	G5 erokee, Gree	S3N ene, Hale, Jei	fferson, Lee,	SP Lowndes, I	Macon,	

¹ *Mycteria americana*, Listed by USFWS as Endangered in Alabama, Florida, Georgia, Mississippi, North Carolina, and South Carolina; not listed elsewhere.

			Q ()		a	GTTLAD
Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
ORDER FALCONIFORME	S - Caracaras and Falcons	Kunk	Kulik	Butus	Status	Status
Family Falconidae - Falcon Falco sparverius Counties of occurrence:	American Kestrel Bibb, Blount, Butler, Cherokee, Covington, Cullman, DeKalb, E Lauderdale, Lawrence, Lee, Lim Montgomery, Morgan, Shelby, S Winston	towah, Fran estone, Ma	nklin, Hale, H dison, Maren	ouston, Jack go, Marion,	son, Jeffers Marshall, N	on, Ionroe,
Falco peregrinus Counties of occurrence:	Peregrine Falcon ³ Colbert, Lauderdale, Lawrence,	G4 Limestone	SHB,S3N e, Madison, M	arshall	SP	
ORDER GALLIFORMES - Family Phasianidae - Grou Bonasa umbellus Counties of occurrence:	se and Turkeys Ruffed Grouse	G5	S1		GBNOS	
ORDER GRUIFORMES - Family Rallidae - Rails Coturnicops noveboracensis Counties of occurrence:	Yellow Rail	G4	S2N		GB	P2
Laterallus jamaicensis Counties of occurrence:	Black Rail Baldwin, Mobile	G4	S2N	SC	GB	P2
<i>Rallus longirostris</i> Counties of occurrence:	Clapper Rail Baldwin, Mobile	G5	S2	SC	GB	
<i>Rallus elegans</i> Counties of occurrence:	King Rail Baldwin, Barbour, Bullock, Cren Marshall, Mobile, Montgomery,				GB Lowndes, l	P2 Macon,
<i>Porphyrio martinicus</i> Counties of occurrence:	Purple Gallinule Baldwin, Barbour, Choctaw, Cla Geneva, Henry, Houston, Mobil			Crenshaw, I	GB Dale, Escam	ıbia,
Family Gruidae - Cranes Grus americana Counties of occurrence:	Whooping Crane Limestone, Madison, Morgan	G1	S1N	LT,XN	SP	
<i>Grus canadensis pulla</i> Counties of occurrence:	Mississippi Sandhill Crane Baldwin ⁴	G5T1	SH	LE	SP	
ORDER CHARADRIIFOR Family Charadriidae - Ploy		uks, and A	Allies			
<i>Charadrius melodus</i> Counties of occurrence:	Piping Plover	G3	S1N	LT ⁵	SP	P1
<i>Charadrius nivosus</i> Counties of occurrence:	Snowy Plover Baldwin, Mobile	G3	S1B,S2N		SP	P1
<i>Charadrius wilsonia</i> Counties of occurrence:	Wilson's Plover Baldwin, Mobile	G5	S1		SP	P1

The southern form, *Falco sparverius paulus*, is included on the species of greatest conservation need list but the northern form, *F. sparverius sparverius*, is not. The northern form is considered to be a species of moderate conservation concern 2 (Priority 3).

³ Species may occur in any county if suitable habitat exists.
⁴ Historic occurrence.

Charadrius melodus, LE, LT; Listed by USFWS as Endangered in Great Lakes watersheds of Illinois, Indiana, Michigan, 5 Minnesota, New York, Ohio, Pennsylvania, and Wisconsin; Listed as Threatened elsewhere, including Alabama.

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
Family Haematopodidae - (<i>Haematopus palliatus</i> Counties of occurrence:	American Oystercatcher	G5	S1		SP	P1
Family Scolopacidae - Snip Tringa semipalmata Counties of occurrence:	Willet	rs G5	S2B,S5N		SP	
<i>Numenius americanus</i> Counties of occurrence:	Long-Billed Curlew Mobile	G5	S2N		SP	
<i>Calidris canutus</i> Counties of occurrence:	Red Knot Baldwin, Mobile	G4	S2N	LT ⁶	SP	P2
Scolopax minor Counties of occurrence:	American Woodcock Baldwin, Barbour, Blount, Butle Covington, Crenshaw, Cullman, Jefferson, Lauderdale, Lawrence Mobile, Montgomery, Morgan, H	DeKalb, E e, Lee, Lime	scambia, Etov estone, Lowno	wah, Frankli des, Macon,	n, Geneva, Madison, N	Jackson, Iarion,
Family Laridae - Jagers, S Sternula antillarum Counties of occurrence:	Least Tern	G4	S2B,S4N		SP	
<i>Gelochelidon nilotica</i> Counties of occurrence:	Gull-Billed Tern Baldwin, Mobile	G5	S2B,S4N		SP	P2
<i>Hydroprogne caspia</i> Counties of occurrence:	Caspian Tern Baldwin, Mobile	G5	S2B,S4N		SP	
Sterna hirundo Counties of occurrence:	Common Tern Mobile	G5	S1B,S4N		SP	
Sterna forsteri Counties of occurrence:	Forster's Tern Mobile	G5	S1B,S5N		SP	
<i>Thalasseus maximus</i> Counties of occurrence:	Royal Tern Baldwin, Mobile	G5	S2B,S5N		SP	
Thalasseus sandvicensis Counties of occurrence:	Sandwich Tern Baldwin, Mobile	G5	S1B,S5N		SP	
<i>Rynchops niger</i> Counties of occurrence:	Black Skimmer Baldwin, Mobile	G5	S2B,S4N		SP	
ORDER COLUMBIFORMI Family Columbidae - Dover Zenaisa asiatica Counties of occurrence:	s and Pigeons White-winged Dove	G5	S2B,S3N		GB	
(Common Ground-dove Autauga, Baldwin, Barbour, Bullo Cleburne, Coffee, Conecuh, Coosa Geneva, Henry, Houston, Lee, Lov Perry, Pike, Randolph, Russell, Sh	a, Covingto wndes, Mac	n, Crenshaw, con, Marengo	Dale, Dallas , Mobile, Mo	s, Elmore, E onroe, Mon	lscambia, tgomery,
ORDER CUCULIFORMES Family Cuculidae - Cuckoo Coccyzus erythropthalmus Counties of occurrence:		G5 organ	S1B		SP	

⁶ Subspecies *Canidis canutus rufa* listed as threatened.

			0		~	
Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
Crotophaga sulcirostris Counties of occurrence:	Groove-billed Ani Mobile	G5	S2N		SP	
ORDER STRIGIFORMES Family Strigidae - Typical						
Athene cunicularia Counties of occurrence:	Burrowing Owl	G4	S2N		SP	
Asio flammeus Counties of occurrence:	Short-Eared Owl Autauga, Baldwin, Bibb, Dallas, Marshall, Mobile, Montgomery	G5 , Etowah, H	S2N enry, Jefferso	on, Lauderda	SP le, Limesto	P2 ne,
ORDER PICIFORMES - P		s, Woodpe	ckers, and	Allies		
Family Picidae - Woodpeck Picoides borealis Counties of occurrence ³	Red-cockaded Woodpecker : Baldwin ⁴ , Barbour, Bibb, Bullo Conecuh, Coosa, Covington, Da Marengo ⁴ , Marshall ⁴ , Perry, St. Winston ⁴	llas, Escam	bia, Hale, Jef	ferson ⁴ , Law	rence ⁴ , Ma	con,
Campephilus pricipalis Counties of occurrence ⁴	Ivory-Billed Woodpecker : Dallas, Hale, Lamar, Marengo,	GH Pike, Wilco	SX	LE	SP	EX
ORDER PASSERIFORMES	5 - Passerine Birds					
Family Tyrannidae - Tyran Empidonax traillii Counties of occurrence:	at Flycatchers Willow Flycatcher Cherokee, Lawrence, Limestone	G5	S1B	SC	SP	
<i>Tyrannus dominicensis</i> Counties of occurrence:	Gray Kingbird Baldwin, Mobile	G5	S1B		SP	
<i>Tyrannus forficatus</i> Counties of occurrence:	Scissor-tailed Flycatcher Autauga, Baldwin, Blount, Colb Lauderdale, Lowndes, Madison, Talladega, Wilcox					
Family Vireonidae - Vireos						
Vireo solitarius Counties of occurrence:	Blue-Headed Vireo Blount, Calhoun, Cherokee, Clay Lawrence, Marshall, Morgan, R					
<i>Vireo gilvus</i> Counties of occurrence:	Warbling Vireo Colbert, Crenshaw, Jackson, Lau	G5 uderdale	S1B		SP	
Family Corvidae - Crows a	nd Jays					
<i>Corvus corax</i> Counties of occurrence ⁴	Common Raven : Cullman, DeKalb, Jackson, Wa	G5 lker, Winsto	SX on		SP	EX
Family Troglodytidae - Wr	ens					
<i>Thryomanes bewickii</i> Counties of occurrence:	Bewick's Wren Autauga ⁴ , Butler, Clay ⁴ , Colbert Franklin ⁴ , Jackson ⁴ , Jefferson, L Mobile, Morgan ⁴ , Randolph ⁴ , Sh Walker ⁴	auderdale, 1	Lawrence ⁴ , L	imestone ⁴ , N	ladison, Ma	arshall ⁴ ,
<i>Cistothorus palustris</i> Counties of occurrence:	Marsh Wren Baldwin, Mobile	G5	S2B, S4N		SP	

³ Species may occur in any county if suitable habitat exists.
⁴ Historic occurrence.

		Global	State	Federal	State	SWAP
Scientific Name	Common Name	Rank	Rank	Status	Status	Status
Family Parulidae - Wood-w		~~~				
Vermivora bachmani Counties of occurrence ⁴ :	Bachman's Warbler Autatuga, Baldwin, Clarke, Coo	GH osa, Cullmar	SX n, Mobile, Tı	LE uscaloosa, W	SP ashington	
Setophaga petechia Counties of occurrence:	Yellow Warbler Autatuga, Cherokee, Colbert, Do Lauderdale, Lee, Limestone, Ma					nar,
Setophaga cerulea Counties of occurrence:	Cerulean Warbler Colbert, Cullman ⁴ , DeKalb ⁴ , Fay Limestone ⁴ , Madison ⁴ , Marshall ⁴				SP auderdale ⁴ ,	P1 Lawrence,
Family Emberizidae - Emb	erizids					
Peucaea aestivalis	Bachman's Sparrow Baldwin, Barbour, Bibb, Bullock Coosa, Covington, Dallas, DeKa Jackson ⁴ , Limestone, Lowndes, I MontgomeryMorgan, Pike, Russ	llb, Escamb Macon, Ma	ia, Fayette, F dison, Mario	Franklin, Gre n, Mobile, M	ene, Henry, lonroe,	
Chondestes grammacus Counties of occurrence:	Lark Sparrow Autauga, Chilton, Colbert, Dalla Lawrence, Limestone, Madison,					
Ammodramus henslowii Counties of occurrence:	Henslow's Sparrow Baldwin, Covington, Escambia, I	G4 Mobile	S2N		SP	P1
Ammodramus leconteii Counties of occurrence:	Le Conte's Sparrow Baldwin, Mobile	G4	S3N		SP	
Ammodramus nelsoni Counties of occurrence:	Nelson's Sparrow Baldwin, Mobile	G5	S3N		SP	P2
Ammodramus maritimus Counties of occurrence:	Seaside Sparrow Baldwin, Mobile	G4	S2		SP	P2
Family Cardinalidae - Card	linals and Allies					
Passerina ciris Counties of occurrence:	Painted Bunting Baldwin, Barbour, Butler, Covin Mobile, Monroe, Montgomery, H				SP e, Lamar, N	larengo,
Family Fringillidae - Fringi	lline and Cardueline Finches	s and Allie	es			
Loxia curvirostra	Red Crossbill	G5	S1B		SP	

Counties of occurrence: Cleburne

⁴ Historic occurrence.

		Global	State	Federal	State	SWAP		
Scientific Name	Common Name	Rank	Rank	Status	Status	Status		
CLASS MAMMALIA	– Mammals							
ORDER SIRENIA - Sireni								
Family Trichechidae - Mar <i>Trichechus manatus</i>	natees West Indian manatee	G2	S 1	LT	SP	P1		
Counties of occurrence:		02	51	LI	51	ГТ		
ORDER RODENTIA - Rodents								
Family Geomyidae - Pocke <i>Geomys pinetis</i>	t Gophers southeastern pocket gopher	G5	S 3		SP	P2		
	Autauga, Baldwin, Barbour, Bullo			onecuh ³ , Cov				
	Dale, Dallas ³ , Escambia, Geneva, Russell, Tuscaloosa ³	Henry ³ , H	louston, Mac	con,Monroe ³ ,	Montgome	ery,		
	Mice, Jerboas, and Jumping Mi		~ .		~~			
Zapus hudsonius Counties of occurrence ⁷	meadow jumping mouse ': Chambers, Chilton, Lee	G5	S 1		SP	P2		
Family Cricetidae - New World Rats and Mice, Voles, Hamsters, and Relatives								
<i>Microtus ochrogaster</i> Counties of occurrence:	prairie vole Limestone, Madison	G5	S2					
<i>Neotoma magister</i> Counties of occurrence:	Allegheny woodrat Colbert, Lauderdale, Limestone, Ja	G3G4 ackson, M	S3 adison, Mar	shall		P2		
Peromyscus polionotus	Alabama beach mouse ⁸	G5T1	S 1	LE	SP	P1		
<i>ammobates</i> Counties of occurrence:	Baldwin							
Peromyscus polionotus	Perdido key beach mouse	G5T1	S 1	LE	SP	P1		
<i>trissyllepsis</i> Counties of occurrence:	Baldwin							
ORDER LAGOMORPHA								
Family Leporidae - Rabbit Sylvilagus obscurus	s and Hares Appalachian cottontail	G4	S 1		GA	P2		
	Clay, Cullman, Lawrence, Winston		~ -					
Sylvilagus palustris	marsh rabbit	G5	S3	0 0	GA	P2		
	Baldwin, Escambia ⁹ , Coffee ⁸ , Cov	•	Dale ⁸ , Genev	a ⁸ , Henry ⁸ , H	louston ⁸			
ORDER SORICOMORPHA Family Soricidae - Shrews	A - Shrews, Moles, and Soleno	dons						
Sorex fumeus	smoky shrew	G5	S 1		SP	P2		
Counties of occurrence: Sorex hoyi	Jackson American pygmy shrew	G5	S 1		SP	P2		
Counties of occurrence:		05	51		51	12		
ORDER CHIROPTERA -								
Family Molossidae - Free-t <i>Tadarida brasiliensis</i>	ailed Bats Brazilian free-tailed bat	G5	S 3			P2		
Counties of occurrence:		05	55			12		
Family Vespertilionidae - V	-							
Lasiurus intermedius Counties of occurrence:	northern yellow bat Mobile	G4G5	S 1		SP	P2		
counter of occurrence.								

⁷ Historic occurrence, no reported collections from Alabama since the mid- to late 1970s.
⁸ Alabama endemic.
⁹ Historic occurrence, no recent information although it still likely occurs in the county.

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status			
Berentine I (unite				Status	Status	Status			
<i>Perimyotis subflavus</i> Counties of occurrence:	tri-colored bat virtually statewide	G3	S 3	UR		P2			
<i>Corynorhinus rafinesquii</i> Counties of occurrence:	Rafinesque's big-eared bat Blount, Clarke, Jackson, Marsha	G3G4 Il	S2		SP	P1			
<i>Myotis austroriparius</i> Counties of occurrence:	southeastern myotis Conecuh, Covington, Monroe	G3G4	S2		SP	P1			
<i>Myotis grisescens</i> Counties of occurrence:	gray myotis G3 S2 LE SP P1 Bibb ¹⁰ , Blount ⁹ , Calhoun ⁹ , Cherokee ⁹ , Chilton ⁹ , Clay ⁹ , Cleburne ⁹ , Colbert, Conecuh, Coosa ⁹ , Cullman ⁹ , DeKalb, Escambia ⁹ , Etowah ⁹ , Franklin, Hale ⁹ , Jackson, Jefferson ⁹ , Lauderdale, Lawrence, Limestone, Madison, Marshall, Morgan, Shelby, St. Clair ⁹ , Talladega ⁹ , Tuscaloosa ⁹								
Myotis leibii	eastern small-footed myotis	G1G3	SNA 11			P1			
<i>Myotis lucifugus</i> Counties of occurrence:	little brown myotis Conecuh, Madison	G3	S 3		SP	P1			
<i>Myotis septentrionalis</i> Counties of occurrence:	northern myotis Franklin, Lawrence	G2G3	S2	LT	SP	P1			
<i>Myotis sodalis</i> Counties of occurrence:	Indiana bat Bibb ⁹ , Blount ⁴ , Calhoun ⁹ , Cherol Cullman ⁹ , DeKalb ⁹ , Etowah ⁹ , Fra Limestone ⁹ , Madison ⁹ , Marshall,	anklin ⁹ , Hale	e ⁹ , Jackson, .	Jefferson ⁹ , L	auderdale9,	Lawrence,			
ORDER CARNIVORA - C Family Felidae - Cats	arnivores								
Puma concolor	cougar	G5	SX	LE^{12}	GANOS	EX			
Family Canidae - Wolves, I	Dogs, Foxes, and Jackals								
Canis rufus	red wolf	G1Q	SX	LE ¹³	GANOS	EX			
Family Ursidae - Bears									
Ursus americanus Counties of occurrence:									

⁴ Historic occurrence.

¹⁰ No occurrence record in ALNHP database but the US Fish & Wildlife Service lists this species as occurring or believed to occur in the county (<u>http://www.fws.gov/daphne/es/specieslst.html</u>).

¹¹ The species is known from adjacent areas of Tennessee and Georgia so it probably occurs in northeastern Alabama. Distribution maps often depict it occurring in Alabama, but no specimens are known from the state.

¹² Both subspecies that occurred in the eastern United states (*Puma concolor cougari*, presumed extinct in wild, and *P. concolor coryi*) are listed as endangered.

¹³ *Canis rufus*, LE - listed endangered range wide, except where listed as experimental populations; presumed extinct in wild except experimental populations in North Carolina and Tennessee.

¹⁴ Ursus americanus is not included in the list of protected species in Nongame Species Regulation 220-2-.92, but is protected under Alabama Game, Fish and Wildlife Laws, Section 9-11-480-481 which makes it illegal to hunt, wound, injure, kill, trap, collect, or capture a black bear, or to attempt to engage in that conduct during the closed season for black bear. It is designated a game animal by Regulation 220-2-.06 of the Alabama Regulations on Game, Fish, and Fur Bearing Animals, but there is no open season for the species.

¹⁵ Black bear sightings have been reported from the county, but there likely is not an established, self-sustaining population in the county.

	~	Global	State	Federal	State	SWAP	
Scientific Name	Common Name	Rank	Rank	Status	Status	Status	
Family Mustelidae - Wease Mustela frenata Counties of occurrence ¹⁰	Is, Badgers, and Otters long-tailed weasel ⁶ : Baldwin, Bibb, Butler, Clarke,	G5 Geneva, G	S3 reene, Jackso	n, Walker	SP	P2	
Family Mephitidae - Skunk Spilogale putorius Counties of occurrence ¹⁰		G4 arke, Clay,	S2S3 Cleburne, Co	oosa, Coving	SP ton, Crensh	P2 aw, Dale,	
ORDER ARTIODACTYLA - Even-toed Hoofed MammalsFamily Cervidae - Deer, Elk, Caribou, and MooseCervus elaphuselkG5SXEX							
Family Bovidae - Antelopes Bos bison	5, Bison, Cattle, Goats, and Sl American bison	heep G4	SX			EX	

¹⁶ Species potentially occurs in every county, but little is known about its current status.

Alabama Natural Heritage Program® – 2019 Tracking List

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
		Kalik	Kalik	Status	Status	Status
CLASS AMPHIBIA -	—					
ORDER ANURA - Frogs a Family Hylidae - Treefrogs						
Hyla andersonii	Pine Barrens Treefrog Covington, Escambia, Geneva	G4	S 2		SP	P1
Pseudacris ocularis Counties of occurrence:	Little Grass Frog Houston	G5	S 1			P2
Family Ranidae - "True" F						
<i>Lithobates areolatus</i> Counties of occurrence:	Crawfish Frog Sumter	G4	S 1		SP	P1
<i>Lithobates capito</i> Counties of occurrence:	Gopher Frog Baldwin ⁴ , Barbour ⁴ , Coffee ⁴ , Co	G3 vington, Esc	S2 cambia, Shel	UR	SP	P1
<i>Lithobates heckscheri</i> Counties of occurrence ⁴	River Frog Baldwin, Escambia, Henry, Mo	G5 bile	S 1		SP	P1
Lithobates sevosus Counties of occurrence ⁴	Dusky Gopher Frog Mobile, Washington	G1	SH	LE	SP	P1
<i>Lithobates sylvaticus</i> Counties of occurrence:	Wood Frog Clay, Cleburne, Randolph, Talla	G5 dega, Tallap	S2			P1
ORDER CAUDATA - Sala	manders					
Family Ambystomatidae - 1 Ambystoma bishopi Counties of occurrence ¹	Mole Salamanders Reticulated Flatwoods Salamander ⁷ : Baldwin, Covington, Houston,		S 1	LE	SP	P1
Ambystoma texanum	Small-mouthed Salamander Choctaw, Madison, Marion, Mor Washington, Wilcox	G5	S3 Iorgan, Perr	y, Sumter, Tu	uscaloosa,	P2
I	Eastern Tiger Salamander Bibb, Bullock, Calhoun, Chilton, G Escambia, Geneva, Henry, Housto Shelby, Talladega			-		
Family Amphiumidae - Am	-					
Amphiuma means Counties of occurrence:	Two-toed Amphiuma Baldwin, Covington, Henry, How Washington	G5 uston, Maco	S3 n, Mobile, N	Ionroe, Mon	tgomery, Pi	ke,
Amphiuma pholeter Counties of occurrence:	One-toed Amphiuma Baldwin, Mobile	G3	S 1		SP	P2
Amphiuma tridactylum Counties of occurrence:	Three-toed Amphiuma Dallas, Hale, Sumter, Tuscaloosa	G5 a, Washingto	S3			
Family Cryptobranchidae - Cryptobranchus alleganiensis Counties of occurrence:	Giant Salamanders Hellbender Colbert, Franklin, Jackson, Laud	G3G4 lerdale, Lim	S2 estone, Mad	UR ison, Marion	SP , Marshall,	P1 Morgan ⁴
Family Plethodontidae - Lu	ingless Salamanders					
Aneides aeneus Counties of occurrence:	Green Salamander Cherokee, Colbert, DeKalb, Fran Marshall, St. Clair, Tuscaloosa ⁴ ,			UR ale, Lawrence	SP e, Madison,	P2 Marion,

 ⁴ Historic occurrence.
 ¹⁷ Historic occurrence: species has not been observed in Alabama since 1981.

	1					
		Global	State	Federal	State	SWAP
Scientific Name	Common Name	Rank	Rank	Status	Status	Status
Desmognathus aeneus	Seepage Salamander	G3G4	S2	UR	SP	P2
Counties of occurrence:	Bibb, Calhoun, Cherokee, Chilto Clair, Talladega, Tuscaloosa	on, Clay, Cle	eburne, Gree	ne, Hale, Ma	rion, Rando	olph, St.
Desmognathus apalachicolae Counties of occurrence:	Apalachicola Dusky Salamander Barbour, Dale, Henry, Houston,		S 3			
Desmognathus auriculatus Counties of occurrence:	Southern Dusky Salamander Baldwin, Covington, Geneva, Ho	G5 ouston, Mob	S2		SP	P1
Desmognathus monticola	Seal Salamander	G5	S5		SP^{18}	
	Bibb, Blount, Butler, Calhoun, C Conecuh, Coosa, Elmore, Jackso Shelby, St. Clair, Talladega, Tall	on, Jefferson				
<i>Desmognathus ocoee</i> Counties of occurrence:	Ocoee Salamander Blount, Cullman, DeKalb, Etowa	G5 ah, Jackson,	S2 Madison, M	larshall, Mor	gan	
<i>Gyrinophilus palleucus palleucu</i> Counties of occurrence:	us Pale Salamander Colbert, DeKalb, Jackson, Limes	G2G3T2 stone, Madis		UR 1	SP	P2
Phaeognathus hubrichti Counties of occurrence:	Red Hills Salamander ⁷ Butler, Conecuh, Covington, Cre	G2 enshaw, Mor	S2 nroe, Wilcox	LT	SP	P1
Plethodon serratus Counties of occurrence:	Southern Red-backed Salamande Calhoun	er G5	S2S3			P2
Family Proteidae - Waterdo	ogs and Mudpuppies					
Necturus alabamensis	Black Warrior Waterdog ⁷ Blount, Cullman ¹⁹ , Fayette ¹⁸ , Jef Winston	G1 ferson ¹⁸ , La	S1 wrence ¹⁸ , M	LE arshall, Tusc	SP caloosa, Wa	P1 lker,
<i>Necturus maculosus</i> Counties of occurrence:	Mudpuppy Colbert, Franklin, Lauderdale, M	G5 Iadison, Ma	S1 rshall			
Family Sirenidae - Sirens						
Siren lacertian	Greater Siren Baldwin, Covington, Henry	G5	S 3			

 ⁷ Alabama endemic.
 ¹⁸ Only populations of Coastal Plain origin are protected by the Nongame Species Regulation.
 ¹⁹ Potentially occurs in the county.

Alabama Natural Heritage Program® – 2019 Tracking List

		Global	State	Federal	State	SWAP
Scientific Name	Common Name	Rank	Rank	Status	Status	Status

Reptiles

Class Reptilia – Lizards, Snakes, and Amphisbaenas

ORDER SQUAMATA, SUB Family Anguidae - Glass Li	ORDER LACERTILIA - Liza	rds			
Ophisaurus attenuatus	Slender Glass Lizard	G5 Claburna	S3 Casas Covington Etc.	SP Jofford	P2
Counties of occurrence:	Barbour, Butler, Calhoun, Chambers Lamar, Lauderdale, Lee, Macon, Mo				011,
<i>Ophisaurus mimicus</i> Counties of occurrence:	Mimic Glass Lizard Baldwin ⁴ , Conecuh, Covington ⁴ , Mc	G3 obile ⁴	S1	SP	P1
Family Scincidae - Skinks Plestiodon anthracinus Counties of occurrence:	Coal Skink Bibb, Blount, Chilton, Choctaw, Col Monroe, Russell, Shelby, St. Clair, T		S3 , Elmore, Lawrence, M	SP arion, Mobi	P2 le ⁴ ,
	Southeastern Five-Lined Skink Autauga, Bibb, Calhoun, Chambers, Colbert, Conecuh, Coosa, Covongto Greene, Houston, Lamar, Lee, Macc Russell, Shelby, Talladega, Tallapoo	n, Cullman, on, Marengo	Elmore, Etowah, Fayer, Marion, Mobile, Picke	tte, Franklin	,
ORDER SQUAMATA, SUB Family Colubridae - Colub	ORDER SERPENTES - Snake rid Snakes	es			
<i>Coluber flagellum</i> Counties of occurrence:	Coachwhip Autauga, Baldwin, Barbour, Bibb, B Covington, Crenshaw, Cullman, Dal Lauderdale, Lee, Macon, Mobile, M Talladega, Tallapoosa, Tuscaloosa, Y	le, Dallas, D onroe, Picko	eKalb, Escambia, Fran ens, Pike, Russell, Shel	klin, Jefferso	
Drymarchon couperi Counties of occurrence:	Eastern Indigo Snake Baldwin ⁴ , Coffee, Conecuh, Coving	G3 ton ⁴ , Escam	S1 LT bia ⁴ , Mobile, Washingt	SP on ⁴	P1
Farancia erytrogramma Counties of occurrence:	Rainbow Snake Baldwin, Chilton, Covington, Dale,	G4 Escambia, H	S3 Henry, Mobile, Shelby,	SP Tuscaloosa	P1
Heterodon simus Counties of occurrence ²	Southern Hog-nosed Snake ⁰ : Autauga, Baldwin, Calhoun, Choc	G2 taw, Clarke,	SH UR Covington, Dale, Esca	SP mbia, Shelb	P1 y
Lampropeltis calligaster calligater calligat	e	G5T5	S1S2	SP	
Lampropeltis calligaster rhomb Counties of occurrence:	omaculata Mole Kingsnake Baldwin, Bibb, Calhoun, Coosa, Eto Randolph, Russell, Shelby, St. Clair			shall, Mobi	le,
Lampropeltis getula Counties of occurrence:	eastern kingsnake Baldwin, Barbour, Bullock, Butler, O Dale, Escambia, Elmore, Geneva, H				
<i>Lampropeltis nigra holbrook</i> Counties of occurrence:	 i eastern speckled kingsnake Autauga, Bullock, Choctaw, Clarke, Marengo, Mobile, Monroe, Montgor Wilcox 				

 ⁴ Historic occurrence.
 ²⁰ Historic occurrence, may be extirpated in Alabama.

Alabama Natural Heritage Program® – 2019 Tracking List

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
Lampropeltis triangulum syspile Counties of occurrence:	<i>x²¹</i> Red Milksnake Lawrence, Madison, Morgan, W	G5T5 inston	S2			
Lampropeltis triangulum triang Counties of occurrence:		G5T5	S2			
<i>Liodytes pygaea</i> Counties of occurrence:	Black Swampsnake Covington, Escambia	G5	S 1			P2
Nerodia clarkii clarkii Counties of occurrence:	Gulf Saltmarsh Watersnake Baldwin, Mobile	G4T4	S2		SP	P2
<i>Nerodia cyclopion</i> Counties of occurrence:	Mississippi Green Watersnake Baldwin, Mobile	G5	S1S2			
Nerodia floridana Counties of occurrence:	Florida Green Watersnake Baldwin	G5	S1S2			
Nerodia taxispilota Counties of occurrence:	Brown Watersnake Baldwin, Barbour, Coffee, Covin Russell	G5 ngton, Dale, I	S3 Escambia, C	Geneva, Heni	ry, Houston	, Lee,
Pituophis melanoleucus lodingi Counties of occurrence:	Black Pinesnake Clarke, Mobile, Washington	G4T2T3	S2	LT	SP	P1
Pituophis melanoleucus melano Counties of occurrence:	<i>leucus</i> Northern Pinesnake Autauga, Calhoun, Cherokee, Ch Jefferson, Lauderdale, Shelby, S				SP Elmore ²¹ , J	P2 ackson,
Pituophis melanoleucus mugitu. Counties of occurrence:	Florida Pinesnake Baldwin ²³ , Covington, Crenshaw	G4T3 v, Escambia ²²	S2 ², Russell	UR	SP	P2
Rhadinaea flavilata Counties of occurrence:	Pine Woods Littersnake Baldwin, Clarke, Mobile, Russel	G4 1, Washingto	S2			
Family Elapidae - Coral Sm Micrurus fulvius Counties of occurrence:	akes Harlequin Coralsnake Autauga ⁴ , Baldwin, Barbour, Bil Greene ⁴ , Henry, Houston, Mobil				SP 1, Dale, Ger	P1 neva,
		ake G4 .rke, Coffee,	S3 Conecuh, C	UR Covington, Cı	renshaw, Da	P2 ale,

Class Chelonia – *Turtles and Tortoises*

ORDER CRYPTODEIRA - Straightneck Turtles Family Cheloniidae - Sea Turtles								
Caretta caretta Counties of occurrenc	Loggerhead Sea Turtle e: Baldwin, Mobile	G3	S 1	LT	SP	P1		
Chelonia mydas Counties of occurrenc	Green Sea Turtle e: Baldwin, Mobile	G3	S 1	LT ²⁴	SP	P1		

⁴ Historic occurrence.

²¹ Ruane et al. (2014) proposed snakes previously considered to be *Lampropeltis triangulum* consist of seven distinct species. ²² Intergradient between northern and Florida pine snakes.
 ²³ Individuals from the county are intergradient with black pine snake.
 ²⁴ Chelonia mydas, LT throughout most of its range, including Alabama; LE in Florida, Mexico.

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
Scientific Tullie	Common Func	Ruins	Runn	Status	Status	Diatas
<i>Lepidochelys kempii</i> Counties of occurrence:	Kemp's Ridley Sea Turtle Baldwin, Mobile	G1	S 1	LE	SP	P1
Family Chelydridae - Snap	ping Turtles					
<i>Macrochelys temminckii</i> Counties of occurrence:	Alligator Snapping Turtle Autauga ⁴ , Baldwin, Bullock, Cal Covington, Elmore, Escambia, F Marshall, Mobile, Monroe, Mon Talladega, Tuscaloosa, Walker,	Franklin, Ho tgomery, Pe	ouston, Laude erry, Russell,	erdale, Lee, I	Lowndes, M	lacon,
Family Dermochelyidae - L			C L L			
Dermochelys coriacea Counties of occurrence ²	Leatherback Sea Turtle ⁵ : Baldwin, Mobile	G2	SNA	LE	SP	P1
Family Emydidae - Emydid	l Turtles					
Deirochelys reticularia	Chicken Turtle	G5	S 3			
Counties of occurrence:	Baldwin, Calhoun, Covington, C Houston, Lee, Macon, Mobile, F				Greene, He	enry,
<i>Graptemys barbouri</i> Counties of occurrence:	Barbour's Map Turtle Barbour, Coffee, Dale, Geneva,	G2 Houston, Ru	S2 ussell		SP	P2
Graptemys ernsti Counties of occurrence:	Escambia Map Turtle Coffee, Covington, Escambia, G	G2 eneva	S2	UR	SP	P2
Graptemys geographica Counties of occurrence:	Northern Map Turtle Bibb, Blount, Colbert, Coosa, Cu Madison, Marshall, Morgan, She		S3 erson, Laude	erdale, Lawre	ence, Limes	tone,
Graptemys ouachitensis Counties of occurrence:	Southern Map Turtle Colbert, Jackson, Lauderdale, La	G5 awrence, Ma	S3 adison, Mars	hall, Morgan	l	
<i>Graptemys pulchra</i> Counties of occurrence:	Alabama Map Turtle Autauga, Baldwin, Bibb, Cherok Etowah, Greene, Hale, Jefferson Perry, Shelby, Sumter, Talladega	, Lowndes,	Marengo, M	obile, Monro		
Malaclemys terrapin pileata	Mississippi Diamond-backed Terrapin	G4T3Q	S2		SP	P1
Counties of occurrence:						
<i>Pseudemys alabamensis</i> Counties of occurrence:	Alabama Red-bellied Cooter Baldwin, Mobile, Monroe ³	G1	S 1	LE	SP	P1
Family Kinosternidae - Mu Sternotherus carinatus Counties of occurrence:	Razor-backed Musk Turtle	G5	S 1			P2
Sternotherus depressus Counties of occurrence:	Flattened Musk Turtle ⁷ Blount, Cullman, Etowah ⁴ , Faye	G2 tte, Jefferso	S2 n, Marshall ⁴	LT , Tuscaloosa,	SP ²⁷ Walker, W	P2 Vinston

Family Testudinidae - Tortoises

⁴ Historic occurrence.

Alabama endemic.
 ²⁵ An occasional visitor to Alabama waters, but not known to nest in the state.
 ²⁶ Possibly occurs in the county.
 ²⁷ Sternotherus depressus is protected under Alabama Game, Fish and Wildlife Laws, Section 9-11-269 as well as the Nongame Regulation.

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
<i>Gopherus polyphemus</i> Counties of occurrence:	Gopher Tortoise Baldwin, Barbour, Bullock, Buth Crenshaw, Dale, Escambia, Gene Washington					
Family Trionychidae - Soft Apalone ferox Counties of occurrence:	shell Turtles Florida Softshell Baldwin, Covington, Escambia, G	G5 Geneva, M	S2 obile		RT	

 ²⁸ Gopherus polyphemus, Listed by USFWS as Threatened west of the Mobile and Tombigbee rivers in Alabama (Choctaw, Mobile, and Washington counties), Mississippi, and Louisiana. Eastern populations are a candidate species.

Alabama Natural Heritage Program® – 2019 Tracking List

		Global	State	Federal	State	SWAP			
Scientific Name	Common Name	Rank	Rank	Status	Status	Status			
Fishes									
CLASS ACTINOPTERYGII – Ray-finned Fishes									
ORDER ACIPENSERIFOR Family Acipenseridae - Stur Acipenser fulvescens	8	G3G4	S1 Shelhy ⁴ St	Clair ⁴ Tallac	SP	EXCAU			
Acipenser oxyrinchus desotoi		G3T2 aw, Clarke,	S1 Coffee, Cov	LT vington, Dale	SP , Escambia				
Scaphirhynchus platorynchus Counties of occurrence ⁴ :	s shovelnose sturgeon Colbert, Lauderdale, Lawrence,	G4 Limestone	SX , Morgan	SAT ²⁹	SP ³⁰	EX			
Scaphirhynchus suttkusi Counties of occurrence:	Alabama sturgeon Autatuga, Baldwin, Clarke, Dalla Sumter ⁴ , Wilcox	G1 as, Elmore ⁴	S1 , Greene ⁴ , M	LE onroe, Montą	SP gomery ⁴ , Pe	P1 erry ⁴ ,			
Family Polyodontidae - Pad	ldlefishes								
Polyodon spathula	paddlefish	G4	S 3		CNGF, SP ³¹				
Counties of occurrence:	Autauga, Baldwin, Choctaw, Cla Lowndes, Macon, Marengo, Mo Tuscaloosa, Walker, Washingtor	bile, Monro							
ORDER LEPISOSTEIFOR Family Lepisosteidae - Gar									
Atractosteus spatula	alligator gar Baldwin, Clarke, Escambia, Mol	G3G4 oile, Monro	s2 e		CNGF				
Lepisosteus platostomus Counties of occurrence ⁴ :	shortnose gar Jackson, Lauderdale, Lawrence,	G5 Limestone	SX , Madison, M	Iarshall, Moi	CNGF rgan	EX			
ORDER HIODONTIFORM Family Hiodontidae - Moon									
Hiodon alosoides	goldeye Lawrence, Limestone, Madison	G5 , Morgan	SX			EX			
<i>Hiodon tergisus</i> Counties of occurrence:	mooneye Baldwin, Bibb, Chilton, Choctav Lamar, Lauderdale, Lawrence, L Mobile, Monroe, Montgomery, N Tallapoosa, Washington, Wilcox	imestone, I Morgan, Per	Lowndes, Ma	con, Madiso	n, Marengo	, Marshall,			

⁴ Historic occurrence.

 ²⁹ Scaphirhynchus platorynchus is treated as threatened due to its similarity of appearance to the endangered pallid sturgeon (Scaphirhynchus albus).

³⁰ Scaphirhynchus platorynchus is not included in Nongame Species Regulation (Regulation 220-2-.92) but all species of sturgeon are protected by Regulation 220-2-.26(4) Restrictions on Possession, Sale, Importation and/or Release of Certain Animals and Fish.

³¹ Polyodon spathula is not included in the list of protected species in the Nongame Species Regulation 220-2-.92, but is protected by Regulations 220-2-.94 Prohibition of Taking or Possessing Paddlefish (Spoonbill) and 220-2-.43 Unlawful to Willfully Waste Paddlefish.

		Global	State	Federal	State	SWAP		
Scientific Name	Common Name	Rank	Rank	Status	Status	Status		
ORDER CLUPEIFORMES Family Clupeidae – Herring Alosa alabamae Counties of occurrence:	8							
ORDER CYPRINIFORMES - Carps, Minnows, and Suckers								
Family Cyprinidae - Carps Campostoma pauciradii Counties of occurrence:	and Minnows bluefin stoneroller Barbour, Chambers, Houston, Le	G4 ee, Randolp	S3 h, Russell					
<i>Chrosomus erythrogaster</i> Counties of occurrence:	southern redbelly dace Colbert, Franklin, Lauderdale, La	G5 awrence, Li	S3 mestone, M	organ				
<i>Cyprinella caerulea</i> Counties of occurrence:	blue shiner Bibb ⁴ , Calhoun, Cherokee, Coosa Talladega ⁴	G2 a, Cleburne	S1 ⁴ , DeKalb, E	LT Etowah ⁴ , Jeffe	SP erson ⁴ , Shel	P1 by ⁴ ,		
<i>Cyprinella callitaenia</i> Counties of occurrence:	bluestripe shiner Barbour, Clay, Henry, Houston, I	G2G3 Lee, Rando	S1 lph, Russell			P1		
<i>Cyprinella gibbsi</i> Counties of occurrence:	Tallapoosa shiner Chambers, Clay, Cleburne, Coos	G4 a, Elmore, I	S3 Lee, Macon,	, Randolph, T	allapoosa			
Erimonax Monachus Counties of occurrence ⁴	spotfin chub : Colbert, Lauderdale	G2	SX	LT, XN ³³	SP	EXCAU		
<i>Erimystax dissimilis</i> Counties of occurrence:	streamline chub Jackson, Marshall, Lauderdale	G4	S1S2			P2		
<i>Erimystax insignis</i> Counties of occurrence:	blotched chub Jackson, Lauderdale, Madison, M	G4 ⁄Iarshall	S2					
Hemitremia flammea Counties of occurrence:	flame chub Blount, Calhoun, Colbert, DeKal Talladega	G3 lb, Lauderda	S3 ale, Lawrend	ce, Limestone	e, Madison,	Morgan,		
<i>Hybognathus hayi</i> Counties of occurrence:	cypress minnow Dallas, Perry	G5	S 3					
<i>Hybognathus nuchalis</i> Counties of occurrence:	Mississippi silvery minnow Autauga, Baldwin, Bibb, Dallas, Pickens, Sumter, Tuscaloosa, Wa			lin, Greene, N	Marion, Per	ry,		
Hybopsis amblops Counties of occurrence:	bigeye chub Colbert, Franklin, Jackson, Laud	G5 erdale, Law	S3 vrence, Lime	stone, Madis	on, Marion	, Marshall		
<i>Hybopsis lineapunctata</i> Counties of occurrence:	lined chub Calhoun, Chambers, Clay, Clebu Talladega, Tallapoosa	G3G4 Irne, Coosa,	S3 , Elmore, Etc	owah, Lee, M	acon, Rand	lolph,		

⁴ Historic occurrence.

³² Listed as a species of concern by the National Marine Fisheries Service (Federal Register 69(73):19975-19979, available at <<u>http://www.nmfs.noaa.gov/pr/pdfs/fr/fr64-19975.pdf</u>>).

³³ LT – Listed Threatened range wide except where listed as Experimental Population, Non-essential; There are three locations where it is designated Experimental but only one (Shoal Creek) includes portions of Alabama. XN – Experimental Population, Nonessential: TN-AL - Nonessential experimental population that would extend from the mouth of Long Branch, Lawrence County, Tennessee (Shoal Creek mile (CM) 41.7 (66.7 kilometers (km)), downstream to the backwaters of the Wilson Reservoir at Goose Shoals, Lauderdale County, Alabama (approximately CM 14 (22 km)), and would include the lower 5 CM (8 km) of all tributaries that enter this reach.

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
<i>Luxilus coccogenis</i> Counties of occurrence:	warpaint shiner DeKalb, Lauderdale	G5	S 1			
<i>Luxilus zonistius</i> Counties of occurrence:	bandfin shiner Barbour, Chambers, Clay, Henry	G4 , Houston, 1	S3 Lee, Randolp	oh, Russell		
<i>Lythrurus fumeus</i> Counties of occurrence:	ribbon shiner Colbert, Franklin, Lauderdale	G5	S 2			
<i>Lythrurus lirus</i> Counties of occurrence:	mountain shiner Lauderdale	G4	S 3			
<i>Lythrurus roseipinnis</i> Counties of occurrence:	cherryfin shiner Baldwin, Clarke, Escambia, Mot	G5 pile, Monroe	S2 e, Washingto	'n		
Macrhybopsis hyostoma Counties of occurrence:		G5	S2			P1
Macrhybopsis sp 2 Nocomis micropogon	Florida chub river chub	G3 G5	S3 S2			
	DeKalb, Franklin, Jackson, Laud			on		
<i>Notropis albizonatus</i> Counties of occurrence:	palezone shiner Lawrence ⁴ , Jackson	G1	S 1	LE	SP	P1
<i>Notropis ariommus</i> Counties of occurrence:	popeye shiner Lauderdale ⁴	G3	SX	UR		EX
<i>Notropis boops</i> Counties of occurrence:	bigeye shiner Colbert, Franklin, Jackson, Laud	G5 erdale, Law	S2 vrence, Limes	stone, Madis	on, Marsha	11
<i>Notropis buchanani</i> Counties of occurrence:	ghost shiner Colbert ⁴ , Lauderdale, Lawrence ⁴	G5 , Limestone	S2 e, Madiosn ⁴ , 1	Marshall, Me	organ ⁴	P2
<i>Notropis cahabae</i> Counties of occurrence:	Cahaba shiner ⁷ Bibb, Blount, Jefferson, Perry, S	G2 helby	S2	LE	SP	P1
Notropis chalybaeus Counties of occurrence ⁴	ironcolor shiner : Baldwin, Clarke, Covington, Es	G4 cambia, He	SH nry, Houston	ı, Mobile, W	SP ashington	P1
<i>Notropis cummingsae</i> Counties of occurrence:	dusky shiner Houston, Lee, Russell	G5	S2			P1
<i>Notropis harperi</i> Counties of occurrence:	redeye chub Barbour, Butler, Coffee, Coving	G4 ton, Crensha	S3 aw, Escambi	a, Geneva, H	lenry, Hous	ton, Pike
<i>Notropis hypsilepis</i> Counties of occurrence:	highscale shiner Chambers, Lee, Randolph, Russe	G3 ell	S2			P2
<i>Notropis leuciodus</i> Counties of occurrence:	Tennessee shiner Jackson, Lauderdale, Madison, M	G5 Marshall	S 1			
<i>Notropis maculatus</i> Counties of occurrence:	taillight shiner Baldwin, Clarke, Dale, Dallas, E Monroe, Pickens, Russell, Sumte				Lamar, Mo	bile,
<i>Notropis melanostomus</i> Counties of occurrence:	blackmouth shiner Baldwin	G2	S 1		SP	P2
<i>Notropis micropteryx</i> Counties of occurrence:	highland shiner Colbert, Franklin, Lauderdale, La	G5 awrence, Li	S2 mestone			

		Global	State	Federal	State	SWAP
Scientific Name	Common Name	Rank	Rank	Status	Status	Status
<i>Notropis photogenis</i> Counties of occurrence:	silver shiner Lauderdale, Limestone	G5	S 1			
<i>Notropis</i> sp. cf. <i>spectrunculu</i> Counties of occurrence:	s sawfin shiner Jackson, Lauderdale, Limestone	G4	S 2			
<i>Notropis telescopus</i> Counties of occurrence:	telescope shiner Colbert, Jackson, Lauderdale, Lin	G5 mestone, M	S3 ladison			
<i>Notropis uranoscopus</i> Counties of occurrence:	skygazer shiner Bibb, Dallas, Elmore, Macon, M	G3 onroe, Mor	S2 Itgomery, Per	rry, Tallapoo	sa, Wilcox	
<i>Notropis wickliffi</i> Counties of occurrence:	channel shiner Franklin, Lauderdale, Madison, M	G5 Marshall	S 1			
<i>Phenacobius mirabilis</i> Counties of occurrence:	suckermouth minnow Franklin	G5	S 1			P1
<i>Phenacobius uranops</i> Counties of occurrence:	stargazing minnow Lauderdale, Lawrence ⁴ , Limestor	G4 ne	S1S2			P2
Pteronotropis euryzonus Counties of occurrence:	broadstripe shiner Barbour, Henry, Houston, Lee, R	G3 Russell	S2			P1
Pteronotropis grandipinnis Counties of occurrence:	Apalachee shiner Houston	GNR	S2			
Pteronotropis merlini Counties of occurrence:	orangetail shiner Barbour, Bullock, Coffee, Dale, o	GNR Geneva, He	S3 enry, Houstor	ı, Pike		
<i>Pteronotropis signipinnis</i> Counties of occurrence:	flagfin shiner Baldwin, Barbour, Choctaw, Cla Mobile, Monroe, Washington	G5 rke, Coffee	S3 , Conecuh, C	covington, Da	ale, Escamb	ia,
Pteronotropis welaka Counties of occurrence:	bluenose shiner Bibb, Clarke, Conecuh, Covingto Washington	G3G4 on, Dallas, G	S2 Geneva, Hen	ry, Houston,	Pickens, Tu	P2 iscaloosa,
Family Catostomidae - Suc	kers					
<i>Carpiodes carpio</i> Counties of occurrence:	river carpsucker Colbert, Lauderdale, Limestone,	G5 Madison, N	S2 Aarshall		CNGF	
<i>Cycleptus elongatus</i> Counties of occurrence:	blue sucker Colbert, Lauderdale	G3	S 1		CNGF	
<i>Cycleptus meridionalis</i> Counties of occurrence:	southeastern blue sucker Autauga, Baldwin, Bibb ³⁴ , Choct Marengo, Mobile, Monroe, Monr Talladega ⁴ , Wilcox,					
<i>Ictiobus cyprinellus</i> Counties of occurrence:	bigmouth buffalo Jackson, Lauderdale, Lawrence,	G5 Limestone,	S2S3 Madison, M	arshall, Morg	CNGF gan	
Ictiobus niger Counties of occurrence:	black buffalo Franklin, Lauderdale, Lawrence,	G5 Limestone	S2S3 , Madison, M	Iarshall, Mor	CNGF gan	
<i>Moxostoma anisurum</i> Counties of occurrence:	silver redhorse Franklin, Jackson, Lauderdale, L	G5 awrence, L	S2 imestone, Ma	adison, Mars	CNGF hall, Morga	n
Moxostoma breviceps Counties of occurrence:	shorthead redhorse Franklin, Jackson, Lauderdale, L	G5 awrence, L	S3 imestone, Ma	adison, Mars	CNGF hall, Morga	n

 ⁴ Historic occurrence.
 ³⁴ Historic occurrence; evidence suggests it has been extirpated in the Cahaba River system.

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
<i>Moxostoma lachneri</i> Counties of occurrence:	greater jumprock Barbour, Chambers, Henry, Hou	G4 ston, Lee, R	S3 andolph, Ru	ıssell	CNGF	
<i>Moxostoma</i> sp. cf. <i>poecilurun</i> Counties of occurrence:	<i>n</i> Apalachicola redhorse Barbour, Chambers, Henry, Hou	G3 ston, Lee, R	S2 ussell		CNGF	
ORDER SILURIFORMES Family Ictaluridae - North Ameiurus brunneus	American Catfishes snail bullhead	G4	S3		CNGF	
Ameiurus catus	Barbour, Chambers, Houston, Lo white catfish Barbour, Geneva, Henry, Housto	G5	S 3		CNGF	
Ameiurus serracanthus	spotted bullhead Barbour, Chambers, Henry, Hou	G3	S2		CNGF	
<i>Noturus crypticus</i> Counties of occurrence ⁴	chucky madtom Jackson	G1	SX	LE	CNGF	EX
Noturus elegans Counties of occurrence ⁴	elegant madtom Jackson, Limestone, Madison	G4	SX		CNGF	
<i>Noturus eleutherus</i> Counties of occurrence:	mountain madtom Limestone	G4	S 1		CNGF	P1
<i>Noturus exilis</i> Counties of occurrence:	slender madtom Colbert, Franklin, Lauderdale, L	G5 awrence, Li	S3 mestone, Ma	arion	CNGF	
<i>Noturus</i> sp. cf. <i>flavus</i> Counties of occurrence:	highlands stonecat Lauderdale, Limestone	G5T4Q	S 1		CNGF	P2
<i>Noturus miurus</i> Counties of occurrence:	brindled madtom Colbert, Franklin, Lauderdale ⁴	G5	S 1		CNGF	P2
<i>Noturus munitus</i> Counties of occurrence:	frecklebelly madtom Bibb, Dallas, Greene, Lamar, M	G3 arion, Monre	S2 be, Perry, Pi	UR ckens, Sumt	SP, CNGF er, Tuscaloo	P1 osa, Wilcox
	freckled madtom Baldwin, Bibb, Choctaw, Clarke Lowndes, Macon, Marengo, Ma Washington, Wilcox, Winston	, Dallas, Fra	nklin, Green			
ORDER PERCOPSIFORM Family Amblyopsidae - Cav	ES - Trout-perch and Allies	;				
Speoplatyrhinus poulsoni Counties of occurrence:	Alabama cavefish ⁷	G1	S 1	LE	SP	P1
<i>Typhlichthys subterraneus</i> Counties of occurrence:	southern cavefish Colbert, DeKalb, Jackson, Laude	G4 erdale, Lawr	S3 ence, Limes	tone, Madis	SP on, Marshal	l, Morgan
Family Fundulidae - Fundulus bifax	stippled studfish	G2G3	S2	s		
Fundulus blaire	Chambers, Coosa, Elmore, Rand western starhead topminnow Autauga, Baldwin, Bibb, Chocta	G4	S 3	obile, Monr	oe, Perry, W	vilcox
	_					

		Global	State	Federal	State	SWAP
Scientific Name	Common Name	Rank	Rank	Status	Status	Status
<i>Fundulus catenatus</i> Counties of occurrence:	northern studfish Colbert, Franklin, Jackson, Laud	G5 erdale, Lim	S3S4 estone			
<i>Fundulus chrysotus</i> Counties of occurrence:	golden topminnow Baldwin, Mobile	G5	S 3			
<i>Fundulus cingulatus</i> Counties of occurrence:	banded topminnow Baldwin, Covington, Escambia,	G4 Mobile	S2			
<i>Fundulus confluentus</i> Counties of occurrence: <i>Fundulus dispar</i> Counties of occurrence:	marsh killifish Baldwin starhead topminnow Choctaw, Clarke, Greene, Mobil	G5 G4 e, Sumter, 7	S2 S2 Fuscaloosa			
Fundulus escambiae	russetfin topminnow Baldwin, Barbour, Bullock, Cov	G4	S 3	Geneva, Ho	uston	
<i>Fundulus jenkinsi</i> Counties of occurrence:	saltmarsh topminnow Baldwin, Mobile	G2	S1	SC ³⁵		
<i>Fundulus pulvereus</i> Counties of occurrence:	Bayou killifish Baldwin, Mobile	G5	S 2			
<i>Leptolucania ommata</i> Counties of occurrence:	pygmy killifish Baldwin	G5	S 1			
<i>Lucania goodei</i> Counties of occurrence:	bluefin killifish Houston	G5	S1			P2
<i>Lucania parva</i> Counties of occurrence:	rainwater killifish Baldwin, Clarke, Mobile, Washi	G5 ngton	S 3			
Family Poeciliidae - Livebe	arers					
Heterandria formosa Counties of occurrence:	least killifish Baldwin, Clarke, Geneva, Houst	G5 on, Mobile,	S3 Washington	, Wilcox		
<i>Poecilia latipinna</i> Counties of occurrence:	sailfin molly Baldwin, Mobile	G5	S2			
ORDER SCORPAENIFOR Family Cottidae - Sculpins	MES - Sculpins and Allies					
Cottus bairdii	mottled sculpin Jackson, Lauderdale, Madison	G5	S2			
<i>Cottus paulus</i> Counties of occurrence:	pygmy sculpin ⁷ Calhoun	G1	S 1	LT	SP	P1
<i>Cottus tallapoosae</i> Counties of occurrence:	Tallapoosa sculpin Chambers, Clay, Cleburne, Elmo	G4 ore, Randolp	S3 ph, Tallapoos	sa		
	Sunfishes, Perches, and Alli	ies				
Family Centrarchidae - Sun Acantharchus pomotis Counties of occurrence:	mud sunfish	G4G5	S 1			
Enneacanthus gloriosus Counties of occurrence:	bluespotted sunfish Baldwin, Clarke, Covington, Mo	G5 bile, Washi	S3 ngton		GF	

 ⁷ Alabama endemic.
 ³⁵ Listed as a species of concern by the National Marine Fisheries Service (Federal Register 69(73):19975-19979, available at <<u>http://www.nmfs.noaa.gov/pr/pdfs/fr/fr64-19975.pdf</u>>).

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
Scientific Pullic	Common 1 (ame	Kullix	Naim	Diatas	Status	Status
<i>Enneacanthus obesus</i> Counties of occurrence:	banded sunfish Baldwin	G5	S 1		GF	
<i>Micropterus cataractae</i> Counties of occurrence:	shoal bass Barbour, Chambers, Lee, Randoly	G3 ph, Russell	S2		GF-HP	P1
Family Percidae - Perches						
Ammocrypta bifascia Counties of occurrence: Houston, Pike	Florida sand darter Baldwin, Butler, Coffee, Conecul	G4 n, Covingto	S3 on, Crenshaw	v, Dale, Esca	mbia, Gene	va,
Ammocrypta vivax Counties of occurrence:	scaly sand darter Mobile	G5	S 1			P1
<i>Crystallaria asprella</i> Counties of occurrence:	crystal darter Baldwin, Bibb, Choctaw, Clarke,		S3 nore, Escam	bia, Greene,	SP Macon, Mo	onroe,
	Perry, Pickens, Sumter, Tallapoo		G2			D2
<i>Etheostoma bellator</i> Counties of occurrence:	warrior darter ⁷ Blount, Cullman, Jefferson	G2	S2			P2
<i>Etheostoma</i> sp. cf. <i>bellator</i> "Counties of occurrence:		G2	S2			P2
<i>Etheostoma</i> sp. cf . <i>bellator</i> 'Counties of occurrence:		GNR	S 1			P2
<i>Etheostoma blennioides</i> Counties of occurrence:	greenside darter Colbert, Franklin, Jackson, Laude Winston	G5 erdale, Law	S3 rence, Limes	stone, Madis	on, Marion,	, Morgan,
<i>Etheostoma blennius</i> Counties of occurrence:	blenny darter Lauderdale	G4	S2			
<i>Etheostoma boschungi</i> Counties of occurrence:	slackwater darter Lauderdale, Limestone, Madison	G1	S 1	LT	SP	P1
<i>Etheostoma brevirostrum</i> Counties of occurrence:	holiday darter Calhoun, Cleburne	G2	S 1		SP	P1
<i>Etheostoma camurum</i> Counties of occurrence:	bluebreast darter Limestone	G4	S 1			P1
<i>Etheostoma chermocki</i> Counties of occurrence:	vermilion darter ⁷ Jefferson	G1	S 1	LE	SP	P1
<i>Etheostoma chuckwachatte</i> Counties of occurrence:	lipstick darter Chambers, Clay, Cleburne, Rando	G3 olph, Talla	S2 poosa		SP	
<i>Etheostoma cinereum</i> Counties of occurrence ⁴ :	ashy darter Lauderdale	G2G3	SX	UR		EX
<i>Etheostoma corona</i> Counties of occurrence:	crown darter Lauderdale	G3	S2			
<i>Etheostoma crossopterum</i> Counties of occurrence:	fringed darter Lauderdale	G4	S 1			
<i>Etheostoma davisoni</i> Counties of occurrence:	Choctawhatchee darter Barbour, Bullock, Butler, Coffee, Geneva, Henry, Houston, Pike	G4 Conecuh,	S3 Covington, G	Crenshaw, D	ale, Escamb	pia,

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status			
<i>Etheostoma ditrema</i> Counties of occurrence:	coldwater darter Calhoun, Cherokee, Chilton, Co	G2 oosa, Etowal	S2 h, Shelby, Ta	alladega	SP	P2			
<i>Etheostoma douglasi</i> Counties of occurrence:	Tuskaloosa darter ⁷ Blount, Cullman, Jefferson, Law	G3 vrence, Wal	S3 ker, Winstor	n					
<i>Etheostoma flabellare</i> Counties of occurrence:	fantail darter Colbert, Franklin, Jackson, Laud	G5 erdale, Law	S3 vrence, Lime	stone, Madis	on, Morgan				
<i>Etheostoma fusiforme</i> Counties of occurrence:	swamp darterG5S3Autauga, Baldwin, Chambers, Clarke, Conecuh, Covington, Escambia, Geneva, Houston, Lamar, Mobile, Monroe, Pickens, Sumter, Tuscaloosa, Washington								
<i>Etheostoma histrio</i> Counties of occurrence:	harlequin darter G5 S3 Bibb, Choctaw, Clarke, Colbert, Coosa, Covington, Dallas, Elmore, Escambia, Fayette, Franklin, Hale, Lamar, Lauderdale, Marion, Monroe, Montgomery, Pickens, Sumter, Tuscaloosa, Wilcox								
<i>Etheostoma jessiae</i> Counties of occurrence:	blueside darter DeKalb, Franklin, Jackson, Laud	G4 lerdale, Lav	S3 vrence ⁴ , Lim	estone, Madi	son				
<i>Etheostoma kennicotti</i> Counties of occurrence:	stripetail darter Colbert, Franklin, Jackson, Laud	stripetail darter G4G5 S3 Colbert, Franklin, Jackson, Lauderdale, Lawrence, Limestone, Madison, Morgan							
<i>Etheostoma lynceum</i> Counties of occurrence:	brighteye darter Mobile, Washington	G5	S 1		SP	P1			
<i>Etheostoma neopterum</i> Counties of occurrence:	lollypop darter Lauderdale	G3	S 1		SP	P1			
<i>Etheostoma nuchale</i> Counties of occurrence:	watercress darter ⁷ Jefferson	G1	S 1	LE	SP	P1			
<i>Etheostoma phytophilum</i> Counties of occurrence:	rush darter ⁷ Etowah, Jefferson, Winston	G1	S 1	LE	SP	P1			
<i>Etheostoma rufilineatum</i> Counties of occurrence:	redline darter Colbert, Franklin, Jackson, Laud	G5 lerdale, Lim	S3 lestone, Mari	ion					
<i>Etheostoma tallapoosae</i> Counties of occurrence:	Tallapoosa darter Chambers, Clay, Cleburne, Coos	G4 sa, Lee, Ran	S3 Idolph, Talla	poosa					
Etheostoma tennesseense Counties of occurrence:	Tennessee darter Colbert, DeKalb, Franklin, Jacks	G5 son, Laudero	S3 dale, Limeste	one, Madisor	ı, Morgan				
<i>Etheostoma trisella</i> Counties of occurrence:	trispot darter Cherokee, Etowah, St. Clair	G1	S 1	РТ	SP	P2			
<i>Etheostoma tuscumbia</i> Counties of occurrence:	Tuscumbia darter Colbert, Lauderdale, Lawrence, I	G2 Limestone,	S2 Madison, M	UR organ	SP	P2			
<i>Etheostoma wapiti</i> Counties of occurrence:	boulder darter Lauderdale ⁴ , Limestone	G1	S 1	LE, XN ³⁶	SP	P1			
Etheostoma zonale Counties of occurrence:	banded darter Colbert, Jackson, Lauderdale, La	G5 wrence, Lin	S2 mestone						

⁴ Historic occurrence.

⁷ Alabama endemic.

³⁶ LE – Listed Endangered range wide (Alabama and Tennessee) except where listed as Experimental Population, Nonessential; XN – Experimental Population, Nonessential: AL - Nonessential experimental population that would extend from the mouth of Long Branch, Lawrence County, Tennessee (Shoal Creek mile (CM) 41.7 (66.7 kilometers (km)), downstream to the backwaters of the Wilson Reservoir at Goose Shoals, Lauderdale County, Alabama (approximately CM 14 (22 km)), and would include the lower 5 CM (8 km) of all tributaries that enter this reach.

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
<i>Etheostoma zonifer</i> Counties of occurrence:	backwater darter Autauga, Bibb, Bullock, Choctav Marengo, Monroe, Montgomery					acon,
<i>Etheostoma zonistium</i> Counties of occurrence:	bandfin darter Colbert	G4G5	S 1			P2
<i>Etheostoma</i> sp. cf. <i>zonistium</i> Counties of occurrence:	blueface darter ⁷ Franklin, Lawrence, Marion, Wi	G1 nston	S 1			P2
Perca flavescens Counties of occurrence:	yellow perch Baldwin, Barbour, Chambers, He Limestone, Marshall, Mobile, M			Lauderdale,	GF Lawrence,	Lee,
Percina aurolineata Counties of occurrence:	goldline darter Bibb, Jefferson, Shelby	G2	S 1	LT	SP	P2
Percina austroperca Counties of occurrence:	southern logperch Crenshaw, Escambia, Geneva, P	G3 ike	S2			
Percina brevicauda Counties of occurrence:	coal darter ⁷ Bibb, Blount, Coosa, Jefferson, I	G2 Perry, Shelb	S2 y, St. Clair ⁴ ,	UR Talladega ⁴ ,	Tuscaloosa	P2
Percina burtoni Counties of occurrence:	blotchside logperch Jackson, Lauderdale ⁴	G2G3	S 1		SP	P1
Percina crypta Counties of occurrence:	Halloween darter Russell	G2	S 1	UR	SP	P1
Percina evides Counties of occurrence:	gilt darter Colbert, Franklin, Lauderdale, L	G4 imestone	S2			P2
Percina lenticula Counties of occurrence:	freckled darter Baldwin, Bibb, Cherokee ⁴ , Dalla Talladega, Tuscaloosa, Wilcox	G3 Is, Elmore, I	S2S3 Macon, Mon	tgomery, Per	rry, Shelby,	Sumter,
<i>Percina palmaris</i> Counties of occurrence:	bronze darter Calhoun, Chambers, Cherokee, C Lee, Randolph, Shelby, St. Clair			Coosa, DeK	alb, Elmore	e, Etowah,
Percina phoxocephala Counties of occurrence:	slenderhead darter Colbert, Franklin, Marion	G5	S2		SP	P1
Percina shumardi Counties of occurrence:	river darter Bibb, Calhoun, Cherokee, Chilto Franklin, Greene, Hale, Jackson, Marshall, Monroe, Perry, Picken Tuscaloosa, Walker, Wilcox, Wi	Lamar, Laus, Shelby, S	uderdale, Lav	wrence, Lime	estone, Mad	con,
Percina sipsi Counties of occurrence:	Bankhead darter ⁷ Lawrence, Winston	G1	S 1	UR	SP	P1
Percina smithvanizi Counties of occurrence:	muscadine darter Chambers, Clay, Cleburne, Coos	G3 a, Elmore, 1	S2 Lee, Randolp	oh, Tallapoos	sa	
<i>Percina suttkusi</i> Counties of occurrence:	Gulf logperch Baldwin, Choctaw, Clarke, Dalla Tuscaloosa, Washington, Wilcov		S3 Hale, Monro	e, Perry, Picl	kens, Sumte	er,

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
Percina tanasi Counties of occurrence:	snail darter Madison, Marshall	G2G3	S 1	LT	SP	P1
Sander sp. cf. vitreus Counties of occurrence:	5	G3	S 1		GF	P1
Family Elassomatidae - Pygmy Sunfishes						
Elassoma alabamae		G1	S 1	LT	SP	P1
Elassoma evergladei		G5 Henry, Hou	S3 ston, Monroe	e		

Class Cephalaspidomorphi – Lampreys

ORDER PETROMYZONTIFORMES - Lampreys

Family Petromyzontidae - I	ampreys		
Ichthyomyzon greeleyi	mountain brook lamprey	G4	S2
Counties of occurrence:	Lauderdale, Madison, Marshall		
Lethenteron appendix	American brook lamprey	G4	S 1
Counties of occurrence:	Colbert, Franklin, Limestone		

⁴ Historic occurrence.⁷ Alabama endemic.

		Global	State	Federal	State	SWAP
Scientific Name	Common Name	Rank	Rank	Status	Status	Status

Invertebrates

Class Bivalvia – Bivalves (Clams & Mussels)

ORDER UNIONOIDA - Fr Family Margaritiferidae - N	reshwater Mussels Margaritifids (Pearl Mussels)					
Cumberlandia monodonta	spectaclecase Colbert, Lauderdale, Limestone, N	G3 Iadison, Mo	S1 rgan	LE	SP	P1
	Alabama pearlshell ⁷ Conecuh, Crenshaw, Escambia, M	G1 [arion ⁴ , Monr	S1 oe, Wilcox	LE	SP	P1
Family Unionidae - Unionid	ds (River Mussels)					
Actinonaias ligamentina Counties of occurrence:	mucket Colbert ⁴ , Jackson ⁴ , Lauderdale, Li	G5 mestone ⁴ , Me	S2 organ ⁴		PSM	P1
Actinonaias pectorosa Counties of occurrence:	pheasantshell Colbert ⁴ , Jackson ⁴ , Lauderdale, Li	G4 mestone ⁴	SX		PSM	EX
Alasmidonta marginata Counties of occurrence:	elktoe Colbert ⁴ , Franklin ⁴ , Jackson, Laud	G4 erdale ⁴ , Mad	S1 ison ⁴		PSM	P1
Alasmidonta triangulata Counties of occurrence:	southern elktoe Russell	G1Q	S1	UR	PSM	P1
Alasmidonta viridis Counties of occurrence:	slippershell mussel Jackson, Madison	G4G5	S1		SP	P1
Amblema elliottii Counties of occurrence:	Coosa fiveridge Calhoun, Cherokee, Coosa, Elmor Tuscaloosa, Walker	G3 e, Etowah, Je	S3 efferson, Sh	elby, St. Cl	PSM air, Talladega	l,
Anodonta hartfieldorum Counties of occurrence:	cypress floater Baldwin, Covington, Escambia	G4	S1		PSM	
Anodonta suborbiculata	flat floater	G5	S 3		PSM	
Counties of occurrence:	Calhoun, Cherokee, Colbert, Covi Monroe, Morgan, St. Clair, Tallad		, Etowah, L	auderdale,	Limestone, M	1adison,
Arcidens confragosus Counties of occurrence:	rock pocketbook Baldwin, Choctaw, Colbert, Dalla Tuscaloosa, Wilcox	G4 s, Elmore, Gr	S3 reene, Hale,	Lauderdale	PSM e, Pickens, Su	mter,
<i>Cyprogenia stegaria</i> Counties of occurrence:	fanshell Colbert, Jackson ⁴ , Lauderdale, Lin	G1Q nestone ⁴ , Ma	S1 dison ⁴ , Mar	LE shall ⁴ , Mor	$\frac{SP}{gan^4}$	P1
Dromus dromas Counties of occurrence:	dromedary pearlymussel Colbert ⁴ , Jackson ⁴ , Lauderdale ⁴ , L	G1 imestone ⁴ , M		E-XN ³⁷ arshall ⁴ , Mo	SP organ ⁴	EX
<i>Elliptio arca</i> Counties of occurrence:	Alabama spike Blount, Calhoun, Chambers, Cher Etowah, Greene, Jefferson, Lamar Clair, Talladega, Tuscaloosa, Was	, Marengo, M	Ionroe, Picl			

⁴ Historic occurrence.

⁷ Alabama endemic.

³⁷ Listed Endangered range wide by USFWS except where listed as Experimental Population, Nonessential; XN -Experimental Population, Non-Essential: AL - free-flowing reach of the Tennessee River below the Wilson Dam, Colbert and Lauderdale counties, Alabama. This species was extirpated from Alabama until a trial transplant of 80 individuals was conducted in 2003. The pilot population survived at least 10 years but suitable hosts are unavailable.

		Global	State	Federal	State	SWAP
Scientific Name	Common Name	Rank	Rank	Status	Status	Status
<i>Elliptio arctata</i> Counties of occurrence:	delicate spike Barbour, Blount, Calhoun, Chero Greene, Jefferson, Monroe, Pick Tuscaloosa, Wilcox, Winston					
<i>Elliptio chipolaensis</i> Counties of occurrence:	Chipola slabshell Houston	G1	S 1	LT	SP	P1
<i>Elliptio dilatata</i> Counties of occurrence:	spike Colbert, Jackson, Lauderdale, La	G5 awrence ⁴ , Li	S1 imestone, M	adison, Mars	PSM hall, Morga	P1 an
<i>Elliptio fraterna</i> Counties of occurrence:	brother spike Russell ⁴	G1	SX	UR	PSM	EX
<i>Elliptio fumata</i> Counties of occurrence:	Gulf slabshell Barbour, Houston, Lee, Russell	G4	S 3		PSM	
-	fluted elephantear Barbour, Coffee, Conecuh, Covi	G3 ngton, Dale	S2 , Geneva, He	enry, Housto	PSM n, Pike	
<i>Elliptio nigella</i> Counties of occurrence ⁴	winged spike ³⁸	G1	SX		PSM	EX
<i>Elliptio purpurella</i> Counties of occurrence:	inflated spike	G2	S 1	UR	PSM	P1
<i>Elliptoideus sloatianus</i> Counties of occurrence:	purple bankclimber Houston ⁴ , Lee	G2	S 1	LT	SP	P1
Epioblasma ahlstedti Counties of occurrence ⁴	Duck River dartersnapper : Colbert, Lauderdale	G1	SH	LE ³⁹	SP	EX
<i>Epioblasma brevidens</i> Counties of occurrence:	Cumberlandian combshell Colbert, Franklin ⁴ , Jackson ⁴ , Lau	G1 iderdale ⁴ , N	S1 Iorgan ⁴	LE-XN ⁴⁰	SP	P1
<i>Epioblasma capsaeformis</i> Counties of occurrence ⁴	oyster mussel : Colbert, Franklin, Jackson, Lau	G1 derdale, Lin	SX nestone, Ma	LE-XN ³⁸ dison, Marsh	SP all, Morgar	EXCAU
Epioblasma florentina Counties of occurrence ⁴	yellow blossom : Colbert, Lauderdale, Madison, I	G1 Marshall	SX	LE-XN ⁴¹	SP	
Epioblasma metastriata Counties of occurrence ⁴	upland combshell : Bibb, Blount, Calhoun, Cheroko Clair, Talladega, Tuscaloosa, W		SX Coosa, Culli	LE man, Etowah	SP , Jefferson,	Shelby, St.
Epioblasma obliquata Counties of occurrence ⁴	catspaw : Lauderdale, Colbert	G1	SX	LE-XN ⁴⁰	SP	EX
Epioblasma othcaloogensis	southern acornshell	GHQ^{41}	SX	LE	SP	EXCAU

Epioblasma othcaloogensis southern acornshell GHQ⁴¹ S Counties of occurrence⁴: Cherokee, Etowah, Shelby, St. Clair, Talladega

³⁸ *Elliptio nigella* was thought to be extinct until it was recently rediscovered in the Flint River in Georgia.

³⁹ *Epioblasma capsaeformis* was listed as endangered under the Endangered Species Act in 1997, including the Duck River population. The Duck River population was described as a new species, *E. ahlstedti*, by Jones and Neves in 2010.

⁴ Historic occurrence.

⁴⁰ Listed Endangered range wide by USFWS except where listed as Experimental Populations, Nonessential; XN Experimental Population, Non-Essential: AL - free-flowing reach of the Tennessee River below the Wilson Dam, Colbert and Lauderdale counties, Alabama, but no reintroductions have been made yet.

⁴¹ Both subspecies of *Epioblasma florentina* that occurred in Alabama (*E. florentina florentina* and *E. florentina walkeri*) were listed endangered rangewide by the USFWS. In 2001, *E. florentina florentina* was included on a list of species approved for a Nonessential Experimental Population in Wilson Dam tailwaters of the Tennessee River, Colbert and Lauderdale counties, Alabama, but no reintroductions have been made yet.

⁴² Possibly extinct.

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
<i>Epioblasma penita</i> Counties of occurrence:	southern combshell Autauga ⁴ , Dallas ⁴ , Elmore ⁴³ , Gre Clair ⁴ , Sumter ⁴ , Talladega ⁴ , Wilc		S1 ur, Lowndes	LE ⁴ , Marengo ⁴ , 1	SP Monroe ⁴ , Pi	ckens ⁴ , St.
<i>Epioblasma triquetra</i> Counties of occurrence:	snuffbox Colbert, Franklin ⁴ , Jackson, Lauc	G3 lerdale ⁴ , Li	S1 mestone ⁴ , N	LE Iadison, Mars	PSM shall, Morga	P1 an ⁴
<i>Fusconaia burkei</i> Counties of occurrence:	tapered pigtoe Barbour, Coffee, Dale, Geneva, H	G2G3 Ienry, Pike	S2	LT	SP	P2
Fusconaia cor Counties of occurrence:	shiny pigtoe Colbert ⁴ , Jackson, Lauderdale ⁴ , N	G1 ⁄Iadison, M	S1 Iarshall	LE-XN ⁴⁰	SP	P1
<i>Fusconaia cuneolus</i> Counties of occurrence:	finerayed pigtoe Colbert ⁴ , Jackson, Lauderdale ⁴ , L	G1 Limestone ⁴ ,	S1 Madison, M	LE-XN ⁴⁰ ⁄Iarshall, Mor	SP gan ⁴	P1
<i>Fusconaia escambia</i> Counties of occurrence:	narrow pigtoe Butler, Conecuh, Covington, Cre	G2 nshaw, Esc	S2 cambia, Pike	LT	SP	P2
	longsolid Colbert, Jackson, Lauderdale, Lii	G3 mestone ⁴ , N	S1 Madison, Ma	UR arshall, Morga	PSM an ⁴	P1
<i>Glebula rotundata</i> Counties of occurrence:	round pearlshell Baldwin, Choctaw, Clarke, Escar	G4G5 nbia, Mobi	S2 ile, Washing	gton	PSM	
Hamiota altilis ⁴⁴ Counties of occurrence:	finelined pocketbook Bibb, Blount, Calhoun, Cherokee Jefferson, Lee, Macon, Monroe, 1					P2 re, Etowah,
Hamiota australis ⁴¹ Counties of occurrence:	southern sandshell Barbour, Coffee, Conecuh, Covir Houston, Pike	G2G3 ngton, Cren	S2 Ishaw, Dale,	LT , Escambia, G	SP Jeneva, Hen	P2 ry,
Hamiota perovalis ⁴¹ Counties of occurrence:	orangenacre mucket Bibb, Blount, Choctaw, Dallas, F Monroe, Pickens, Shelby, Sumter				SP awrence, M	P2 arion,
	shinyrayed pocketbook Barbour ⁴ , Houston, Lee, Russell	G2	S 1	LE	SP	P1
Hemistena lata Counties of occurrence:	cracking pearlymussel Colbert ⁴ , Lauderdale ⁴ , Limestone	G1	S 1	LE-XN ³⁹	SP	P1
Lampsilis abrupta Counties of occurrence:	pink mucket Colbert, Jackson ⁴ , Lauderdale, La	G2 awrence ⁴ , I	S1 Limestone, N	LE Madison, Mar	SP shall, Morg	P1 an
<i>Lampsilis fasciola</i> Counties of occurrence:	wavyrayed lampmussel Colbert, Franklin, Lauderdale, La	G5 wrence ⁴ , L	S2 Limestone, Ja	ackson, Madi	PSM son, Marsha	all
<i>Lampsilis floridensis</i> Counties of occurrence:	Florida sandshell Barbour, Butler, Covington, Crer Russell	G4 Ishaw, Dale	S2 e, Escambia	, Geneva, Ho	PSM uston, Lee,	Pike

⁴ Historic occurrence.

⁴⁰ Listed Endangered range wide by USFWS except where listed as Experimental Populations, Nonessential; XN Experimental Population, Non-Essential: AL - free-flowing reach of the Tennessee River below the Wilson Dam, Colbert and Lauderdale counties, Alabama, but no reintroductions have been made yet.

⁴¹ Possibly extinct.

 $^{^{43}}$ An effort to reestablish *Epioblasma penita* into the Coosa River in the tailwaters below Jordan Dam was initiated in 2005.

⁴⁴ Species in the genus *Hamiota* were previously considered to be in the genus *Lampsilis*. Species listed under the Endangered Species Act were listed under the genus *Lampsilis*. Roe and Hartfield (2005) placed these four species in the new genus *Hamiota*. The U.S. Fish and Wildlife Service still uses *Lampsilis* on their website except for *Hamiota australis*.

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
Lampsilis ovata Counties of occurrence:	pocketbook Colbert, Franklin ⁴ , Jackson, Lauc	G5 lerdale, Lin	S2 nestone, Ma	dison, Marsh	PSM all, Morgan	l
Lampsilis virescens Counties of occurrence:	Alabama lampmussel Colbert ⁴ , Franklin, Jackson, Lauc	G1 lerdale ⁴ , M	S1 adison ⁴	LE-XN ³⁹	SP	P1
<i>Lasmigona alabamensis</i> Counties of occurrence:	Alabama heelsplitter Autauga, Bibb, Blount, Calhoun, Greene, Jefferson, Lamar, Lown Clair, Sumter, Talladega					
Lasmigona complanata Counties of occurrence:	white heelsplitter Colbert, Franklin, Jackson, Laud	G5 erdale, Law	S2 vrence, Lime	estone, Madis	PSM son, Marsha	ll, Morgan
Lasmigona costata Counties of occurrence:	flutedshell Colbert, Franklin ⁴ , Jackson, Lauc	G5 lerdale ⁴ , Li	S2 mestone, M	adison, Mars	PSM hall	
Lasmigona etowaensis Counties of occurrence:	Etowah heelsplitter Calhoun, Cherokee, Chilton, Cle Talladega	G3 burne, Coos	S2 sa, Etowah,	Jefferson, Sh	PSM elby, St. Cl	P2 air,
Lasmigona holstonia Counties of occurrence:	Tennessee heelsplitter Jackson	G3	S 1	UR	PSM	P2
Lasmigona subviridis Counties of occurrence:	green floater Russel ⁴	G3	SX	UR	PSM	EX
<i>Lemiox rimosus</i> Counties of occurrence:	birdwing pearlymussel Colbert ⁴ , Jackson ⁴ , Lauderdale ⁴ ,	G1 Madison ⁴ , 1	SX Morgan ⁴	LE-XN ⁴⁵	SP	EX
<i>Leptodea leptodon</i> sc Counties of occurrence ⁴	aleshell : Colbert, Lauderdale	G1G	2 SX	LE	SP	EX
<i>Ligumia recta</i> Counties of occurrence:	black sandshell Bibb ⁴ , Calhoun ⁴ , Cherokee ⁴ , Coll Jefferson ⁴ , Lauderdale, Lawrence Monroe ⁴ , Montgomery ⁴ , Morgan Tuscaloosa ⁴ , Wilcox ⁴	e ⁴ , Limestor	ne, Lownde	s ⁴ , Macon ⁴ , N	Iadison, Ma	arshall,
Ligumia subrostrata Counties of occurrence:	Pondmussel Dallas ⁴ , Hale, Mobile, Pickens	G5	S2		PSM	
<i>Medionidus acutissimus</i> Counties of occurrence:	Alabama moccasinshell Greene, Lamar, Lawrence, Picke	G2 ns, Shelby,	S2 Tuscaloosa	LT , Winston	SP	P1
<i>Medionidus conradicus</i> Counties of occurrence:	Cumberland moccasinshell Colbert, Jackson, Lauderdale ⁴ , M	G3G4 Iadison ⁴ , M	S1 arshall ⁴	UR	SP	P1
Medionidus parvulus Counties of occurrence ⁴	Coosa moccasinshell : Bibb, Blount, Calhoun, Cheroke Winston	G1Q ee, Etowah,	SX Jefferson, S	LE helby, St. Cl	SP air, Tallade	EXCAU ga,
Medionidus penicillatus	Gulf moccasinshell	G2	S1	LE	SP	P1

⁴ Historic occurrence.

³⁹ Listed Endangered range wide by USFWS except where listed as Experimental Populations, Nonessential; XN Experimental Population, Non-Essential; AL - free-flowing reach of the Tennessee River below the Wilson Dam, Colbert and Lauderdale counties, Alabama, but no reintroductions have been made yet.

⁴⁵ Listed Endangered range wide (as *Conradilla caelata*) by USFWS except where listed as Experimental Population, Nonessential; XN - Experimental Population, Non-Essential; AL - free-flowing reach of the Tennessee River below the Wilson Dam, Colbert and Lauderdale counties, Alabama. This species was extirpated from Alabama until a trial transplant of 80 individuals in Wilson Dam tailwaters was conducted in 2003. The pilot population survived at least 10 years but suitable hosts are limited.

			<u> </u>		<u><u> </u></u>	CULAD
Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
	•	Rum	Itum	Status	Status	Diatas
Counties of occurrence:	Houston, Russell ⁴					
<i>Obovaria arkansasensis</i> Counties of occurrence: Tuscaloosa	southern hickorynut Bibb ⁴ , Fayette, Greene, Lamar, M	G2 Marengo ⁴ , N	S2 Marion, Mon	roe ⁴ , Pickens	PSM , Shelby ⁴ , S	P1 umter,
<i>Obovaria choctawensis</i> Counties of occurrence:	Choctaw bean Barbour, Bullock, Butler, Coffee Geneva, Henry, Houston, Pike	G2 , Conecuh,	S2 Covington,	LE Crenshaw, D	SP ale, Escamb	P2 Dia,
<i>Obovaria olivaria</i> Counties of occurrence ⁴	hickorynut : Colbert, Lauderdale, Limestone	G4 , Madison, 1	SX Marshall, M	organ	PSM	EX
<i>Obovaria retusa</i> Counties of occurrence ⁴	ring pink : Colbert, Jackson, Lauderdale, L	G1 imestone, N	SX Madison, Ma	LE rshall, Morga	SP an	EX
<i>Obovaria subrotunda</i> Counties of occurrence:	round hickorynut Colbert, Franklin ⁴ , Jackson, Lau	G4 derdale ⁴ , Li	S2 mestone ⁴ , M	UR adison, Mars	PSM shall, Morga	P1 m ⁴
<i>Obovaria unicolor</i> Counties of occurrence:	Alabama hickorynut Autauga ⁴ , Bibb ⁴ , Choctaw, Clark Lowndes ⁴ , Marion, Montgomery Tuscaloosa, Walker ⁴ , Washingto	⁴ , Perry, Pie	ckens, Shelb			
	littlewing pearlymussel : Lauderdale, Limestone	G1	SX	LE	SP	EX
Plethobasus cicatricosus Counties of occurrence:	white wartyback Colbert, Jackson ⁴ , Lauderdale, M	G1 Iadison ⁴ , M	S1 [arshall ⁴ , Mo	LE rgan ⁴	SP	P1
	orangefoot pimpleback : Colbert, Jackson, Lauderdale, L	G1 imestone, N	SX Madison, Ma	LE rshall, Morga	SP an	EX
Plethobasus cyphyus Counties of occurrence:	sheepnose Colbert, Jackson, Lauderdale, Li	G3 mestone ⁴ , N	S1 Madison, Ma	LE rshall, Morga	SP an	P1
Pleurobema athearni Counties of occurrence:	Canoe Creek pigtoe ⁷ St. Clair	G1	S1	UR	PS	P1
Pleurobema beadleianum Counties of occurrence:	Mississippi pigtoe Washington	G3	S 1		PSM	P1
Pleurobema clava Counties of occurrence:	clubshell Colbert, Jackson, Lauderdale, M	G1G2 adison, Mo	SX rgan	LE-XN ³⁹	SP	EX
Pleurobema cordatum Counties of occurrence:	Ohio pigtoe Colbert, Jackson ⁴ , Lauderdale, L	G4 imestone, N	S2 Madison, Ma	rshall, Morga	PSM an	P1
Pleurobema curtum Counties of occurrence:	black clubshell Pickens ⁴	GH^{41}	SX	LE	SP	
Pleurobema decisum Counties of occurrence:	southern clubshell Bibb, Calhoun, Cherokee, Chilto Etowah, Greene, Jefferson, Lama Pickens, Shelby, St. Clair, Sumte Winston	ar, Lee, Ma	con, Marion	, Monroe, Mo	ontgomery,	Perry,

⁴ Historic occurrence.

⁷ Alabama endemic.

 ³⁹ Listed Endangered range wide by USFWS except where listed as Experimental Populations, Nonessential; XN Experimental Population, Non-Essential; AL - free-flowing reach of the Tennessee River below the Wilson Dam, Colbert and Lauderdale counties, Alabama, but no reintroductions have been made yet.

⁴¹ Possibly extinct.

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
Pleurobema georgianum Counties of occurrence:	southern pigtoe Calhoun, Cherokee, Clay, Clebu	G1 rne, Coosa,	S1 Etowah, She	LE elby, St. Clair	SP r, Talladega	P1
Pleurobema hanleyianum Counties of occurrence ⁴	Georgia pigtoe : Cherokee, Clay, Etowah, St. Cla	G1 air	SX	С	SP	P1
Pleurobema hartmanianum Counties of occurrence ⁴	Cherokee pigtoe : Cherokee, Elmore, Etowah, She	G1 lby, Tallade	SX ega		PSM	EX
Pleurobema oviforme Counties of occurrence:	Tennessee clubshell Colbert ⁴ , Franklin ⁴ , Jackson, Lau	G2G3 iderdale ⁴ , L	S1 .imestone ⁴ , M	UR Iadison, Mar	PSM shall	P1
Pleurobema perovatum Counties of occurrence:	ovate clubshell Autauga ⁴ , Bibb, Blount, Cheroke Fayette ⁴ , Greene, Jefferson ⁴ , Lar Shelby ⁴ , St. Clair, Sumter, Tusca	nar, Lee, M	acon, Mario	n ⁴ , Monroe ⁴ ,		
Pleurobema plenum Counties of occurrence:	rough pigtoe Colbert, Jackson ⁴ , Lauderdale, L	G1 awrence ⁴ , I	S1 Limestone ⁴ , N	LE Madison, Ma	SP rshall, Mor	P1 gan
Pleurobema pyriforme Counties of occurrence:	oval pigtoe Houston, Lee ⁴ , Russell ⁴	G2	S 1	LE	SP	P1
Pleurobema rubellum Counties of occurrence:	warrior pigtoe ⁷ Cullman ⁴ , Fayette, Jefferson ⁴ . La	G1G2 wrence, Sh	S1 elby ⁴ , Tusca	LE ⁴⁶ loosa, Winst	SP on	P1
Pleurobema rubrum Counties of occurrence:	pyramid pigtoe Colbert, Jackson ⁴ , Lauderdale, L	G2G3 imestone ⁴ ,	S1 Madison, Ma	UR arshall, Morg	SP gan	P1
Pleurobema sintoxia Counties of occurrence:	round pigtoe Colbert, Jackson ⁴ , Lauderdale, L	G4G5 imestone, N	S1 Madison, Mar	rshall, Morga	SP an	P1
Pleurobema stabile	Coosa pigtoe	G1	SX		PSM	P1
Pleurobema strodeanum Counties of occurrence:	fuzzy pigtoe Barbour, Bullock, Butler, Coffee Geneva, Henry, Houston, Pike	G2 , Conecuh,	S2 Covington, (LT Crenshaw, D	SP ale, Escamb	P2 pia,
Pleurobema taitianum Counties of occurrence:	heavy pigtoe Choctaw, Clarke ⁴ , Dallas, Elmor Pickens ⁴ , Sumter ⁴ , Walker ⁴ , Was			LE Marengo, Mo	SP onroe ⁴ , Mor	P1 ntgomery ⁴ ,
Pleuronaia barnesiana Counties of occurrence:	Tennessee pigtoe Colbert ⁴ , Franklin ⁴ , Jackson, Lau	G2G3 iderdale ⁴ , L	S1 imestone, M	UR adison, Mars	PSM shall	P2
Pleuronaia dolabelloides Counties of occurrence:	slabside pearlymussel Colbert, Franklin ⁴ , Jackson, Lau	G2 derdale ⁴ , Li	S1 mestone ⁴ , M	LE adison, Mars	SP shall, Morga	P1 an ⁴
Potamilus inflatus Counties of occurrence:	inflated Heelsplitter Baldwin, Choctaw, Clarke, Dalla Sumter, Tuscaloosa, Washingtor		S1S2 Hale, Marer	LT ngo, Monroe	SP ⁴ , Perry ⁴ , Pi	P2 ckens,
Potamilus ohiensis Counties of occurrence:	pink papershell Colbert, Jackson, Lauderdale, Li	G5 mestone, M	S3 Iorgan		PSM	
<i>Ptychobranchus fasciolaris</i> Counties of occurrence:	kidneyshell Colbert, Franklin, Jackson, Laud	G4G5 erdale, Lim	S2 lestone, Mad	ison, Marsha	PSM Ill, Morgan	P1

⁴ Historic occurrence.

⁷ Alabama endemic.

 ⁴⁶ The USFWS lists *Pleurobema furvum* as endangered under the Endangered Species Act and considers *P. rubellum* as extinct. ALNHP considers *P. furvum* a synonym of *P. rubellum* following the taxonomy used by James D. Williams, Arthur E. Bogan, and Jeffrey T. Garner in *Freshwater Mussels of Alabama & the Mobile Basin in Georgia, Mississippi, and Tennessee* (2008). Williams et al. (2008) state "A formal reconciliation of the list should replace *P. furvum* with *P. rubellum*."

Seientiffe Norme	Common Norma	Global	State	Federal	State	SWAP States
Scientific Name	Common Name	Rank	Rank	Status	Status	Status
Ptychobranchus foremanian. Counties of occurrence:	us rayed kidneyshell Bibb, Calhoun, Cherokee, Chilto Monroe ⁴ , Shelby, St. Clair, Talla		S1 e, Coosa ⁴ , E	LE ⁴⁷ lmore ⁴ , Etow	SP vah, Jefferso	on,
Ptychobranchus greenii Counties of occurrence:	triangular kidneyshell ⁷ Blount, Cullman, Jefferson, Law	G1	S1 ens ⁴ , Tuscalo	LE bosa, Walker	SP , Winston	P1
Ptychobranchus jonesi Counties of occurrence:	southern kidneyshell Barbour, Coffee, Conecuh ⁴ , Cov	G1 ington ⁴ , Dal	S1 le, Escambia	LE , Geneva, He	SP enry ⁴ , Pike	P1
Ptychobranchus subtentus Counties of occurrence ⁴	fluted kidneyshell : Colbert, Jackson, Lauderdale, L	G2G3 imestone, N	SX Iadison	LE	SP	EX
<i>Pyganodon cataract</i> Counties of occurrence:	eastern floater Barbour ⁴ , Russell, Tallapoosa	G5	S 1		PSM	
<i>Quadrula cylindrica cylindri</i> Counties of occurrence:	<i>ica</i> rabbitsfoot Colbert, Franklin ⁴ , Jackson, Lau	G3G4T3 derdale ⁴ , Lir	S1 mestone ⁴ , M	LT adison, Mars	SP shall, Morga	P1 an ⁴
<i>Quadrula infucata</i> Counties of occurrence:	sculptured pigtoe Barbour ⁴ , Chambers ⁴ , Henry ⁴ , H	G3 ouston, Lee	S1 , Russell		PSM	P2
<i>Quadrula intermedia</i> Counties of occurrence ⁴	Cumberland monkeyface : Colbert, Lauderdale, Limestone	G1 , Madison, I	SX Marshall	LE-XN ³⁹	SP	EX
<i>Quadrula kieneriana</i> Counties of occurrence ⁴	Coosa orb : Chilton, Coosa, Elmore, Shelby	G3Q , St. Clair, T	SX Falladega		PSM	EX
<i>Quadrula metanevra</i> Counties of occurrence:	monkeyface Autauga, Bibb, Calhoun ⁴ , Chero Lawrence ⁴ , Limestone, Lowndes Perry, Pickens, Shelby ⁴ , St. Clair	, Madison,	Marshall, M	onroe, Mont	gomery, Mo	
<i>Quadrula nobilis</i> Counties of occurrence:	Gulf Mapleleaf Autauga, Clarke, Coosa, Dallas, Pickens, Sumter, Talladega, Tus				PSM s, Macon, M	lonroe,
Quadrula sparsa	Appalachian monkeyface	G1	SX	LE	SP	EX
Quadrula stapes Counties of occurrence ⁴	stirrupshell : Dallas, Green, Lowndes, Montg	GH ⁴¹ gomery, Picl	SX cens, Sumter	LE	SP	
Quadrula succissa Counties of occurrence:	purple pigtoe Barbour, Bullock, Butler, Coffee Geneva, Henry, Houston, Pike	G3G4 e, Conecuh,	S3 Covington, (Crenshaw, D	PSM ale, Escamb	bia,
<i>Reginaia rotulata</i> Counties of occurrence:	round ebonyshell Conecuh, Covington, Escambia	G1	S1	LE	SP	P1
Strophitus connasaugaensis Counties of occurrence:	Alabama creekmussel Bibb, Calhoun, Cherokee, Chilto Lowndes, Macon, Monroe, Mon					
	rayed creekshell	G3	S 3		PSM	P2

⁴ Historic occurrence.

³⁹ Listed Endangered range wide by USFWS except where listed as Experimental Populations, Nonessential; XN Experimental Population, Non-Essential; AL - free-flowing reach of the Tennessee River below the Wilson Dam, Colbert and Lauderdale counties, Alabama, but no reintroductions have been made yet.

⁴¹ Possibly extinct.

⁴⁷ *Ptychobranchus greenii* was listed as endangered under the federal Endangered Species Act in 1993. Williams et al. (2008) restricted its distribution to the Black Warrior and Tombigbee River systems, with the form in the remainder of the Mobile Basin recognized as *Ptychobranchus foremanianus*. The listing of *P. greenii* includes what is now considered to be *P. foremanianus*.

⁷ Alabama endemic.

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
Strophitus radiatus						
	Barbour, Bullock, Butler, Dallas, Marion, Monroe, Perry, Pickens,					nar, Macon,
Strophitus williamsi Counties of occurrence:	flatwoods creekshell Barbour, Bullock, Butler, Coffee Geneva, Pike	GNR e, Conecuh,	S2 Covington, (Crenshaw, D	PSM ale, Escaml	P2 bia,
Strophitus subvexus Counties of occurrence:	southern creekmussel Blount, Choctaw, , Fayette, Gree Tuscaloosa, Winston	G3 ene, Jefferso	S3 n, Lamar, L	awrence, Ma	PSM rion, Picker	ns, Sumter,
Strophitus undulatus Counties of occurrence:	creeper Colbert, Franklin ⁴ , Lauderdale ⁴ ,	G5 Madison ⁴	S1		PSM	P1
<i>Toxolasma corvunculus</i> Counties of occurrence:	southern purple lilliput Bibb, Blount, Calhoun, Cherokee Lowndes ⁴ , Macon ⁴ , Montgomery					P1
	pale lilliput Jackson, Lauderdale ⁴ , Limestone	G1 ²⁴ , Madison ⁴	S1	LE	SP	P1
	purple lilliput Colbert, Franklin, Jackson, Laud	G3Q erdale, Law	S2 rence, Lime	UR stone, Madis	PSM on, Marsha	11
-	lilliput Calhoun, Cherokee, Clay, Colber Jackson, Jefferson, Lamar, Laud Madison, Marengo, Marshall, M Tallapoosa, Walker, Washington	erdale, Law onroe, Morg	rence, Lee, 1	Limestone, L	owndes, M	acon,
<i>Toxolasma paulus</i> Counties of occurrence:	iridescent lilliput Houston, Lee, Russell	G4G5Q	S2		PSM	
Toxoloasma sp. 1 Counties of occurrence:	Gulf lilliput Barbour, Bullock, Butler, Coffee Geneva, Henry, Pike	G2 , Conecuh,	S2 Covington,	Crenshaw, D	PSM ale, Escaml	oia,
0	fawnsfoot Autauga, Bibb, Blount, Calhoun, Greene, Jackson, Jefferson, Lauc Montgomery, Morgan, Perry, Pie	lerdale, Lim	estone, Low	ndes, Madis	on, Marsha	ll, Monroe,
<i>Truncilla truncata</i> Counties of occurrence:	deertoe Colbert, Franklin ⁴ , Jackson, Laud Morgan ⁴	G5 derdale, Lav	S1 wrence ⁴ , Lin	nestone ⁴ , Ma	PSM dison, Mars	hall,
Uniomerus columbensis Counties of occurrence:	Apalachicola pondhorn Henry, Houston, Lee, Russell	G3	S2		PSM	
Uniomerus declivis Counties of occurrence:	tapered pondhorn Dallas, Lowndes, Wilcox	G5Q	S 3		PSM	
<i>Utterbackia peggyae</i> Counties of occurrence:	Florida floater Dale, Geneva, Henry, Houston	G3	S 1		PSM	P1
Villosa iris Counties of occurrence:	rainbow Colbert, Franklin, Jackson, Laud Morgan	G5Q lerdale, Lav	S3 vrence ⁴ , Lim	nestone, Mad	PSM ison, Marsh	uall,

⁴ Historic occurrence.

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
Villosa nebulosa Counties of occurrence	Alabama rainbow Bibb, Calhoun, Cherokee, Chilto Talladega, Walker, Winston	G3 on, Clay, E	S3 towah, Jeffer	UR son, Lawrend	PSM ce, Shelby,	P2 St. Clair,
Villosa taeniata Counties of occurrences	painted creekshell Colbert ⁴ , Jackson, Lauderdale, L	G4 Limestone ⁴ ,	S2 Madison, M	arshall, Morg	PSM gan ⁴	P2
Villosa trabalis Counties of occurrence ⁴	Cumberland bean : Colbert, Jackson, Lauderdale, M	G1 Iorgan	SX	LE-XN ³⁹	SP	EXCAU
Villosa umbrans Counties of occurrence:	Coosa creekshell Calhoun, Cherokee ⁴ , Chilton ⁴ , C	G2 lay, Coosa,	S2 Etowah ⁴ , Sh	UR elby, St. Cla	PSM ir, Talladeg	P2 a
Villosa vanuxemensis Counties of occurrence:	mountain creekshell Colbert, Franklin, Jackson, Laud	G4 erdale, Lav	S3 vrence, Limes	stone, Madis	PSM on, Marsha	ll, Morgan
Villosa villosa Counties of occurrence:	downy rainbow Conecuh, Houston, Lee	G3	S1		PSM	P1

⁴ Historic occurrence.

 ³⁹ Listed Endangered range wide by USFWS except where listed as Experimental Populations, Nonessential; XN Experimental Population, Non-Essential: AL - free-flowing reach of the Tennessee River below the Wilson Dam, Colbert and Lauderdale counties, Alabama, but no reintroductions have been made yet.

Alabama Natural Heritage Program® – 2019 Tracking List

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
	Gastropods (Slugs and Si					
^	asiropous (Stags and St	iuns)				
FRESHWATER SNAILS ORDER ARCHITAENIOG						
Family Viviparidae - Live-						
Campeloma decampi Counties of occurrence:	slender campeloma ⁷	G1	S 1	LE	SP	P1
<i>Lioplax cyclostomaformis</i> Counties of occurrence:	cylindrical lioplax Bibb, Jefferson, Shelby	G1	S1	LE	SP	P1
<i>Tulotoma magnifica</i> Counties of occurrence:	tulotoma snail ⁷ Autauga, Calhoun, Coosa, Dallas	G2 , Elmore, M	S2 Ionroe, Shel	LT lby, St. Clair,	SP Talladega,	P2 Wilcox
ORDER BASOMMATOPH						
Family Ancylidae - Freshwa Ferrissia mcneili Counties of occurrence:	hood ancylid ⁷	G2G3	S2			
<i>Rhodacmea cahawbensis</i> Counties of occurrence:	Cahaba ancylid Bibb, Shelby	G1	S 1	UR		P1
<i>Rhodacmea filosa</i> Counties of occurrence:	wicker ancylid ⁷ Talladega	G1	S1			P1
Rhodacmea hinkleyi	knobby ancylid	G2G3	SX			EX
ORDER HETEROSTROPH						
Family Valvatidae - Valvat Valvata bicarinata	as two-ridge valvata	G5	S 3			
ORDER NEOTAENIOGLO	SSA					
Family Hydrobiidae - Pebb		C1	G 1	L ID		DI
Antrorbis breweri Counties of occurrence:	Manitou snail ⁷ DeKalb	G1	S 1	UR		P1
<i>Clappia cahabensis</i> Counties of occurrence:	Cahaba pebblesnail ⁷ Bibb, Shelby	G1	S 1			P2
<i>Fontigens nickliniana</i> Counties of occurrence:	watercress snail Blount, Calhoun, Tuscaloosa	G5	S 1			P1
<i>Lepyrium showalteri</i> Counties of occurrence:	flat pebblesnail ⁷ Bibb. Dallas ⁴ , Shelby, Talladega ⁴	G1	S1	LE	SP	P1
Marstonia angulobasis	angled marstonia ⁷	G1	S 1			P2
Marstonia hershleri	Coosa pyrg ⁷	G1	S 1			P2
Marstonia pachyta Counties of occurrence:	armored marstonia ⁷ Limestone	G1	S 1	LE	SP	P1
<i>Marstonia scalariformis</i> Counties of occurrence:	moss pyrg Madison	G1	S 1		SP	P2
<i>Pseudotryonia grahamae</i> Counties of occurrence:	Salt Spring hydrobe ⁷ Clarke	G1	S 1			P1

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
Scientific Maine		NallK	Maiik	Status	Bidlus	Status
Rhapinema dacryon	teardrop snail	G5	S2			
Somatogyrus aureus	golden pebblesnail	G1	SH			
Somatogyrus biangulatus Counties of occurrence ⁴	angular pebblesnail ⁷ : Colbert, Lauderdale	GHQ	SH			
Somatogyrus constrictus	knotty pebblesnail ⁷	GHQ	SH			
Somatogyrus coosaensis	Coosa pebblesnail ⁷	GH	SH			
Somatogyrus crassus	stocky pebblesnail ⁷	GH	SH			
Somatogyrus currierianus Counties of occurrence:	Tennessee pebblesnail ⁷ Madison ⁴	GH	SH			
Somatogyrus decipiens	hidden pebblesnail ⁷	GH	SH			
Somatogyrus excavatus Counties of occurrence:	ovate pebblesnail ⁷ Lauderdale ⁴	GH	SH			
Somatogyrus georgianus	Cherokee pebblesnail ⁷	GH	SH			
Somatogyrus humerosus Counties of occurrence ⁴	atlas pebblesnail ⁷ : Colbert, Lauderdale	GH	SH			
Somatogyrus nanus	dwarf pebblesnail ⁷	GH	SH			
Somatogyrus obtusus	moon pebblesnail ⁷	GH	SH			
Somatogyrus pygmaeus	pygmy pebblesnail ⁷	GH	SH			
Somatogyrus quadratus Counties of occurrence ⁴	quadrate pebblesnail ⁷ : Lauderdale	GH	SH			
Somatogyrus sargenti	mud pebblesnail ⁷	GH	SH			
Somatogyrus strengi Counties of occurrence:	rolling pebblesnail ⁷ Jackson, Lauderdale	G1	S 1			
Somatogyrus substriatus	Choctaw pebblesnail	GH	SH			
Somatogyrus tennesseensis Counties of occurrence:	opaque pebblesnail Lauderdale	G1	S 1			
Somatogyrus walkerianus Counties of occurrence:	Gulf Coast pebblesnail Escambia	G2G3	S2			
Stiobia nana Counties of occurrence:	sculpin snail ⁷ Calhoun	G1	S 1			P1
Family Pleuroceridae - Hor Athearnia anthonyi Counties of occurrence:	n, River, and Rock Snails Anthony riversnail Colbert, Jackson, Lauderdale, Li	G1 imestone	S 1	LE-XN ⁴⁸	SP	P1

⁴ Historic occurrence.

 ⁷ Alabama endemic.
 ⁸⁸ Listed Endangered range wide by USFWS except where listed as Experimental Population, Nonessential; XN – Experimental Population, Nonessential: AL - free-flowing reach of the Tennessee River below the Wilson Dam, Colbert and Lauderdale counties, Alabama.

	~	Global	State	Federal	State	SWAP
Scientific Name	Common Name	Rank	Rank	Status	Status	Status
Elimia acuta	acute elimia	G2	S 1	UR		
<i>Elimia alabamensis</i> Counties of occurrence:	mud elimia ⁷ Chilton	G1	S 1			
Elimia albanyensis	black-crest elimia	G3Q	SNR			
<i>Elimia ampla</i> Counties of occurrence:	ample elimia ⁷ Bibb, Shelby	G1	S 1			P2
<i>Elimia annae</i> Counties of occurrence:	rainbow elimia ⁷ Butler, Conecuh, Covington, Cre	G3 enshaw, Pike	S 3			
<i>Elimia annettae</i> Counties of occurrence:	lilyshoals elimia ⁷ Bibb, Shelby	G1	S 1	UR		P2
<i>Elimia bellacrenata</i> Counties of occurrence:	princess elimia ⁷ Bibb ⁴ , Shelby, Tuscaloosa ⁴	G1Q	S 1	UR		P1
<i>Elimia bellula</i> Counties of occurrence:	walnut elimia ⁷ Shelby, Talladega	G1Q	S 1	UR		
<i>Elimia boykiniana</i> Counties of occurrence:	flaxen elimia Henry, Houston	G2Q	S2			P2
<i>Elimia broccata</i> Counties of occurrence:	brooch elimia ⁷ Calhoun	G1	S 1			P1
<i>Elimia bullula</i> Counties of occurrence:	a freshwater snail ⁷ Calhoun, Cleburne, Coosa, Shelb	G1G2Q by, Talladega	S1S2			
Elimia caelatura	rippled elimia	G3Q	S 3			
<i>Elimia cahawbensis</i> Counties of occurrence:	Cahaba elimia ⁷ Bibb, Jefferson, Shelby, St. Clair	G4	S4			
<i>Elimia chiltonensis</i> Counties of occurrence:	prune elimia ⁷ Chilton, Coosa, Shelby, St. Clair	G2	S2	UR		
<i>Elimia clara</i> Counties of occurrence:	riffle elimia ⁷ Bibb, Jefferson, Shelby, St. Clair	G3	S 3			
Elimia clenchi	slackwater elimia	G3Q	S 3			
<i>Elimia cochliaris</i> Counties of occurrence:	cockle elimia ⁷ Bibb, Jefferson ³ , Tuscaloosa ³	G1	S 1	UR		P1
<i>Elimia comma</i> Counties of occurrence:	hispid elimia ⁷ Blount, Jefferson	G2	S2			
<i>Elimia crenatella</i> Counties of occurrence:	lacey elimia ⁷ Calhoun ⁴ , Chilton ⁴ , Coosa ⁴ , DeK	G1 alb ⁴ , Etował	S1 n ⁴ , Shelby ⁴ ,	LT St. Clair ⁴ , Ta	SP alladega	P1
<i>Elimia curvicostata</i> Counties of occurrence:	graphite elimia Covington	G5Q	S 3			
Elimia cylindracea	cylinder elimia	G2	S2	UR		
Elimia dickinsoni	stately elimia	G5	S 3			P2

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
<i>Elimia exusta</i> Counties of occurrence:	fire elimia ⁷ Conecuh, Escambia	G2	S 2			P2
Elimia fascinans	banded elimia ⁷	G3	S 3			
<i>Elimia glarea</i> Counties of occurrence:	gravel elimia ⁷ Barbour, Coffee, Dale, Henry, H	G3 Iouston, Pike	S3			
<i>Elimia godwini</i> Counties of occurrence:	rusty elimia ⁷ Calhoun, St. Clair, Talladega	G2G3	S2S3			
Elimia haysiana	silt elimia ⁷	G3	S 3		SP	
Elimia hydei	gladiator elimia ⁷	G2	S2			
<i>Elimia interveniens</i> Counties of occurrence:	slowwater elimia Colbert, Lauderdale	G2	S 2			
<i>Elimia lachryma</i> Counties of occurrence:	nodulose Coosa River snail ⁷ Shelby, Talladega	G1	S1	UR		P1
<i>Elimia laqueata</i> Counties of occurrence:	panel elimia Limestone	G5	S2			
Elimia lecontiana	rippled elimia	G2G3	SNR			
<i>Elimia melanoides</i> Counties of occurrence:	black mudalia ⁷ Blount, Marshall	G2	S 2			P2
Elimia mihalcikae	latticed elimia ⁷	G1	S 1			
<i>Elimia nassula</i> Counties of occurrence:	round-rib elimia ⁷ Colbert, Lawrence, Madison, M	G1Q organ	S 1	UR		P1
<i>Elimia olivula</i> Counties of occurrence:	caper elimia ⁷ Montgomery	G1Q	S1			P1
Elimia paupercula	sooty elimia ⁷	G3Q	S 3			
<i>Elimia perstriata</i> Counties of occurrence:	engraved elimia ⁷ Lawrence, Madison	G1	S 1	UR		P1
Elimia pybasi	spring elimia ⁷	G2	S2			
<i>Elimia showalteri</i> Counties of occurrence:	compact elimia ⁷ Bibb, Shelby	G1Q	S 1			
<i>Elimia taitiana</i> Counties of occurrence:	dented elimia ⁷ Marengo, Monroe, Sumter, Wild	G3Q cox	S 3			
Elimia teretria	auger elimia ⁷	G1	S 1			P1
<i>Elimia ucheensis</i> Counties of occurrence:	creek elimia ⁷ Russell	G3	S 3			
Elimia vanuxemiana	cobble elimia ⁷	G1	S 1			P1
<i>Elimia varians</i> Counties of occurrence:	puzzle elimia ⁷ Bibb	G1G2Q	S1S2			P2

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
<i>Elimia variata</i> Counties of occurrence:	squat elimia ⁷ Bibb, Jefferson ⁴ , Shelby	G1Q	S 1			P2
Io fluvialis	spiny riversnail	G2	SX			EX
<i>Leptoxis ampla</i> Counties of occurrence:	round rocksnail ⁷ Bibb, Calhoun ⁴ , Chilton ⁴ , Shelby	G2 , St. Clair ⁴	S 2	LT	SP	P2
Leptoxis compacta Counties of occurrence:	oblong rocksnail ⁷ Bibb ⁴ , Shelby	G1	S 1	UR		P1
<i>Leptoxis formani</i> Counties of occurrence:	interrupted rocksnail Cherokee ⁴ , Elmore ⁴⁹	G1	SX	С	SP	EXCAU
<i>Leptoxis picta</i> Counties of occurrence:	spotted rocksnail ⁷ Autauga, Clarke, Dallas, Monroe	G1 , Wilcox	S 1	UR	SP	P2
<i>Leptoxis plicata</i> Counties of occurrence:	plicate rocksnail ⁷ Blount, Greene ⁴ , Jefferson, Tusca	G1 aloosa ⁴	S 1	LE	SP	P1
<i>Leptoxis taeniata</i> Counties of occurrence:	painted rocksnail ⁷ Calhoun, Chilton, Monroe ⁴ , Shel	G1 by, St. Clai	S1 r ⁴ , Talladega	LT	SP	P2
Leptoxis virgata Counties of occurrence:	smooth mudalia Jackson ⁴	G2	SX			EX
<i>Lithasia armigera</i> Counties of occurrence:	armored rocksnail Colbert, Lauderdale	G3G4	S 1			P2
Lithasia curta Counties of occurrence ⁴	knobby rocksnail : Colbert, Lauderdale	G1	SX	UR		EX
<i>Lithasia geniculata</i> Counties of occ	ornate rocksnail currence: Colbert, Lauderdale	G3Q	S 1			
<i>Lithasia lima</i> Counties of occurrence:	warty rocksnail Colbert, Lauderdale , Limestone	G2Q	S 1			P2
Lithasia salebrosa Counties of occurrence:	muddy rocksnail Colbert, Lauderdale, Limestone ⁴	G2G3Q	S 1			P2
<i>Lithasia verrucosa</i> Counties of occurrence:	varicose rocksnail Colbert, Jackson, Lauderdale, Ma	G4Q adison, Mar	S3 shall			
Pleurocera alveare Counties of occurrence:	rugged hornsnail Colbert, Lauderdale, Lawrence, I	G3 Limestone ⁴	S 1			P2
Pleurocera annulifera	ringed hornsnail ⁷	G3G4	S3S4			
Pleurocera brumbyi	spiral hornsnail ⁷	G2G3	S2S3			
Pleurocera corpulenta Counties of occurrence:	corpulent hornsnail Jackson	G1	S 1	UR		P1
Pleurocera curta	shortspire hornsnail	G2	S1S2			
Pleurocera foremani Counties of occurrence:	rough hornsnail ⁷ Elmore, Shelby	G1	S1	С	SP	P1
	noble hornsnail	G2	S2			

⁴ Historic occurrence.
⁷ Alabama endemic.
⁴⁹ Reintroduced in the Coosa River below Jordan Dam in 2004.

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
Pleurocera nobilis Counties of occurrence:				2		
<i>Pleurocera postelli</i> <i>Pleurocera prasinata</i> Counties of occurrence:	broken hornsnail ⁷ smooth hornsnail ⁷ Choctaw, Dallas, Shelby, Sumte	G2Q G4 r, Washingt	S2 S4 ton, Wilcox			
Pleurocera pyrenella Counties of occurrence:	skirted hornsnail ⁷ Limestone, Madison, Morgan ⁴	G2	S2	UR		P2
Pleurocera showalteri Counties of occurrence:	upland hornsnail Shelby, St. Clair, Talladega	G2Q	S2			
Pleurocera trochiformis	sulcate hornsnail	G2	S2			
Pleurocera vestita Counties of occurrence:	brook hornsnail Shelby	G3	S2			
Pleurocera walkeri Counties of occurrence:	telescope hornsnail Lauderdale	G3	S 3			

⁴ Historic occurrence.
⁷ Alabama endemic.

Alabama Natural Heritage Program® – 2019 Tracking List

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
TERRESTRIAL SNAILS						
ORDER STYLOMMATOP	HORA - Terrestrial Sna	ails and Slugs				
Family Bulimulidae Rabdotus mooreanus	prairie rabdo	tus	G5	SNR		
Family Cionellidae	L.					
Cochlicopa morseana	Appalachian	pillar	G5	SNR		
Family Discidae Anguispira alabama	Alabama tige	ersnail	G2	S2?		
Anguispira alternata	flamed tigers		G5	S1S2		
Anguispira cumberlandiana	-		G3	S1S2		
Anguispira jessica	mountain dis	-	G3G4	S1S2		
Anguispira mordax	Appalachian	tigersnail	G4	SNR		
Discus bryanti	sawtooth dis	0	G3	SNR		
Discus clappi	channelled d	isc	G1	S 1		
Discus nigrimontanus	black mount	ain disc	G4	S 1?		
Family Helicarionidae Dryachloa dauca	carrot glass		G2	S 1		
Family Helicodiscidae						
Helicodiscus aldrichianus	burrowing co	oil	G3	SNR		
Helicodiscus barri Counties of occurrence:	raccoon coil Colbert, Lauderdale, Madis	on	G3G4	SNR		
Helicodiscus fimbriatus Counties of occurrence:	fringed coil Jackson, Madison		G4	SNR		
Helicodiscus hadenoecus Counties of occurrence:	cricket coil Madison		G3	SNR		
Helicodiscus singleyanus	smooth coil		G5	SX		
Family Limacidae Deroceras laeve	meadow slug	5	G5	SNR		
Family Philomycidae						
Philomycus sellatus	Alabama ma	-	G2G3	S1?		
Philomycus togatus	toga mantles	lug	G5	S1?		
Family Polygyridae Daedalochila fatigiata	new harmony	liptooth	G3	S 1?		
Daedalochila subclausa	Suwannee lip	-	G3	SNR		
Daedalochila troostiana	Nashville lip		G4	SNR		
Inflectarius approximans	tight-gapped		G2	S2?		
Inflectarius downieanus	dwarf globel	•	G3	SNR		
Inflectarius smithi	Alabama sha	green	G2	S2		

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
Linisa texasiana	Texas liptooth		G3G4	SNR		
Lobosculum pustule	grooved liptooth		G3G4	SNR		
Mesodon clausus trossulus	a land snail		G5T2T3	3 S1S2		
Mesodon normalis	grand globe		G5	SNR		
Mesodon sanus	squat globelet		G3	SNR		
Mesodon trossulus	Danby globelet		G1	S 1		
Patera sargentiana	grand bladetooth	7	G2	S 2		
Polygyra cereolus	southern flatcoil		G4	SNR		
Polygyra septemvolva	Florida flatcoil		G5	SNR		
Praticolella lawae	Appalachian shr	ubsnail	G3	SNR		
Praticolella mobiliana	Choctaw shrubs	nail	G3	SNR		
Stenotrema brevipila	Talladega slitmo	uth	G2	SNR		
Stenotrema calvescens	Chattanooga slit	mouth	G3	SNR		
Stenotrema exodon	Alabama slitmou	ıth	G2	SNR		
Stenotrema florida	Apalachicola slit	mouth	G3	SNR		
Stenotrema magnafumosum	Appalachian slit	mouth	G4	SNR		
Stenotrema maxillatum	ridge-lip slitmou	th	G3	SNR		
Triodopsis tennesseensis	budded threetoot	h	G4	SNR		
Xolotrema fosteri	bladetooth wedg	e	G4	SNR		
Xolotrema obstrictum	sharp wedge		G4	SNR		
Family Punctidae Punctum blandianum	brown spot		G4	SNR		
Punctum smithi	lamellate spot		G4	SNR		
Punctum vitreum	glass spot		G5	SNR		
Family Pupillidae Columella edentula	toothless columr	L	G5	SNR		
Columella simplex	high spire colum	n	G5Q	SNR		
Gastrocopta abbreviata	plains snaggleto	oth	G4	S 1		
Gastrocopta clappi	bluegrass snaggl	etooth	G4G5	SNR		
Gastrocopta pellucida	slim snaggletoot	h	G5	S 1		
Gastrocopta procera	wing snaggletoo	th	G5	SNR		
Gastrocopta riparia	Gulf Coast snag	gletooth	G4G5	SNR		
Gastrocopta rupicola	tapered snagglet	ooth	G4	SNR		
Pupisoma dioscoricola	yam babybody		G3	SNR		
Vertigo alabamensis	Alabama vertigo		G3	S1S2		

Vertigo conecuhensisConecuh vertigoG2S1Vertigo gouldiivariable vertigoG5S2S3Counties of occurrence: Jackson, Lauderdale, Limestone, MadisonG4S1Family StrobilopsidaeStriate vertigoG4S1Strobilops hubbardiflattened pineconeG3G4SNRFamily SuccineidaeG2S2?S2?Catinella apricadiurnal ambersnailG2S2?Catinella pugilatorweedpatch ambersnailG1G2S1Succinea forsheyispotted ambersnailG3SNRSuccinea greeriidryland ambersnailG3SNRSuccinea paraliasaltmarsh ambersnailG2SNRSuccinea unicolorsquatty ambersnailG3SNRSuccinea unicolorsquatty ambersnailG3SNRSuccinea unicolorstone glyphG1G2SNRCounties of occurrence: Montgomery ⁴ Stone glyphG1G2SNRGlyphyalinia latebricola Counties of occurrence: Jacksonblind glyph ⁷ G1G2SNRGlyphyalinia pecki Counties of occurrence: Jacksonblind glyph ⁷ G1G2S1?Mesomphix friabilisbrittle buttonG3S1?Paravitrea bidensgray supercoilG1S1Paravitrea bidensgray supercoilG1S1Paravitrea bidensgray supercoilG3SNRParavitrea perophilaCherokee supercoilG4S1Paravitrea perophilaCherokee supercoilG4S1<	State Status	Federal Status	State Rank	Global Rank	Common Name	Scientific Name
Counties of occurrence: Jackson, Lauderdale, Limestone, Madison Vertigo rugosulaG4S1Family Strobilopsidae Strobilops hubbardiflattened pineconeG3G4SNRFamily Succineidae Catinella apricadiurnal ambersnailG2S2?Catinella pugilatorweedpatch ambersnailG4SNRSuccinea forsheyispotted ambersnailG4SNRSuccinea greeriidryland ambersnailG3SNRSuccinea greeriidryland ambersnailG3SNRSuccinea paraliasaltmarsh ambersnailG2SNRSuccinea unicolorsquatty ambersnailG3SNRSuccinea urbanaurban ambersnailG2GSNRCounties of occurrence: Montgomery*SNRSNRFamily Zonitidae Counties of occurrence: Jacksonstone glyphG4SNRGlyphyalinia latebricola Counties of occurrence: Jacksonblind glyph?G1G2SNRGlyphyalinia pecki Counties of occurrence: Jacksonbrittle buttonG3S1Mesomphix friabilisbrittle buttonG3S1Mesomphix latiorgray supercoilG1S1Paravitrea bidensgray supercoilG3SNRParavitrea publichattatacherate supercoilG4S1Paravitrea publichattatacherate supercoilG4S1Paravitrea publichattatacherate supercoilG4S1Paravitrea publichattatacherate supercoilG4S1Paravitrea publikagray supercoilG3 <td></td> <td>S1</td> <td>G2</td> <td>0</td> <td>Conecuh vertigo</td> <td>Vertigo conecuhensis</td>		S 1	G2	0	Conecuh vertigo	Vertigo conecuhensis
Vertigo rugosulaStriate vertigoG4S1Family Strobilops hubbardiflattened pineconeG3G4SNRFamily Succineidaeiurnal ambersnailG2S2?Catinella apricadiurnal ambersnailG1G2S1Succinea forsheyispotted ambersnailG4SNRSuccinea forsheyiaptical ambersnailG3SNRSuccinea greeriidryland ambersnailG3SNRSuccinea andianaxeric ambersnailG3SNRSuccinea unicolorsquatty ambersnailG2SNRSuccinea unicolorsquatty ambersnailG2SNRSuccinea unicolorsquatty ambersnailG2SNRSuccinea unicolorsquatty ambersnailG2SNRSuccinea unicolorsquatty ambersnailG2SNRGlyphyalinia cumberlandianahill glyphG4SNRGlyphyalinia cumberlandianahill glyphG4SNRGlyphyalinia pecki Counties of occurrence: Jacksonbind glyph?G1G2S1S2Mesomphix friabilisbrittle buttonG3S1?Mesomphix friabilisbrittle buttonG3S1?Paravitrea bidensgray supercoilG1S1Paravitrea multidentatadentate supercoilG4S1Paravitrea perophilaCherokee supercoilG4S1Paravitrea pilsbryanastrate supercoilG3S2?		S2S3	G5			
Strobilops hubbardiflattened pineconeG3G4SNRFamily Succineidaediurnal ambersnailG2S2?Catinella apricadiurnal ambersnailG1G2S1Succinea forsheyispotted ambersnailG4SNRSuccinea forsheyidryland ambersnailG3SNRSuccinea greeriidryland ambersnailG3SNRSuccinea indianaxeric ambersnailG3SNRSuccinea paraliasaltmarsh ambersnailG2SNRSuccinea unicolorsquatty ambersnailG3SNRSuccinea urbanaurban ambersnailG2G3SNRCounties of occurrence: Montgomery*SNRSNRGlyphyalinia cumberlandianahill glyphG4SNRGlyphyalinia packiSone glyphG1G2S1S2Counties of occurrence: Jacksonblind glyph?G1G2S1S2Glyphyalinia specusblind glyph?G1G2S1S2Counties of occurrence: Jacksonforoad buttonG3G4S2?Mesomphix friabilisbrittle buttonG5S1?Paravitrea bidensgray supercoilG1S1Paravitrea conecuhensistriangular supercoilG3SNRParavitrea multidentatadentate supercoilG5S2?Paravitrea pilsbryanaCherokee supercoilG4S1		S 1	G4	, Madison		
Catinella apricadiurnal ambersnailG2\$2?Catinella pugilatorweedpatch ambersnailG1G2\$1Succinea forsheyispotted ambersnailG4\$NRSuccinea greeriidryland ambersnailG3\$NRSuccinea indianaxeric ambersnailG2\$NRSuccinea indianasaltmarsh ambersnailG2\$NRSuccinea unicolorsquatty ambersnailG3\$NRSuccinea unicolorsquatty ambersnailG2G3\$NRSuccinea urbanaurban ambersnailG2G3\$NRCounties of occurrence:Montgomery4\$NR\$NRGlyphyalinia latebricola Counties of occurrence:Stone glyphG1G2\$NRGlyphyalinia pecki Counties of occurrence:blind glyph7G1G2\$S12Glyphyalinia specus Counties of occurrence:hollow glyphG4\$NRGlyphyalinia specus Counties of occurrence:brittle buttonG3\$S12Mesomphix friabilisbrittle buttonG3G4\$22Paravitrea bidensgray supercoilG1\$1Paravitrea multidentatadentate supercoilG3\$NRParavitrea petrophilaCheroke supercoilG4\$1Paravitrea pilsbryanatranslucent supercoilG2\$2?		SNR	G3G4	ne	flattened pinecon	
Catinella pugilatorweedpatch ambersnailG1G2S1Succinea forsheyispotted ambersnailG4SNRSuccinea greeriidryland ambersnailG3SNRSuccinea indianaxeric ambersnailG5SNRSuccinea paraliasaltmarsh ambersnailG2SNRSuccinea unicolorsquatty ambersnailG2G3SNRSuccinea urbanaurban ambersnailG2G3SNRCounties of occurrence:Montgomery4SNRGlyphyalinia latebricola Counties of occurrence:stone glyphG4SNRGlyphyalinia pecki Counties of occurrence:blind glyph7G1G2S1S2Glyphyalinia specus Counties of occurrence:blind glyph7G1G2S1S2Glyphyalinia specus Counties of occurrence:brittle buttonG3S1Mesomphix friabilisbrittle buttonG3G4S2?Paravitrea bidensgray supercoilG1S1Paravitrea multidentatadentate supercoilG4S1Paravitrea petrophilaCheroke supercoilG4S1Paravitrea pilsbryanatranslucent supercoilG2S2?						•
Succinea forsheyispotted ambersnailG4SNRSuccinea greeriidryland ambersnailG3SNRSuccinea indianaxeric ambersnailG5SNRSuccinea paraliasaltmarsh ambersnailG2SNRSuccinea unicolorsquatty ambersnailG3SNRSuccinea unicolorsquatty ambersnailG2G3SNRSuccinea unicolorurban ambersnailG2G3SNRSuccinea unicolorsquatty ambersnailG2G3SNRSuccinea unicolorstone glyphG4SNRCounties of occurrence: Montgomery4SNRSineSNRGlyphyalinia cumberlandianahill glyphG4SNRGlyphyalinia latebricola Counties of occurrence: Jacksonstone glyphG1G2SIS2Glyphyalinia pecki Counties of occurrence: Jacksonblind glyph ⁷ G1G2SIS2Glyphyalinia specus Counties of occurrence: Jacksonbrittle buttonG5S1?Mesomphix friabilisbrittle buttonG3G4S2?Paravitrea bidensgray supercoilG1S1Paravitrea conecuhensistriangular supercoilG3SNRParavitrea multidentatadentate supercoilG4S1Paravitrea petrophilaCherokee supercoilG4S1Paravitrea pilsbryanatranslucent supercoilG2S2?		S2?	G2	ail	diurnal ambersna	Catinella aprica
Succinea greeriidryland ambersnailG3SNRSuccinea indianaxeric ambersnailG5SNRSuccinea indianasaltmarsh ambersnailG2SNRSuccinea unicolorsquatty ambersnailG3SNRSuccinea unicolorsquatty ambersnailG3SNRSuccinea unicolorsquatty ambersnailG2G3SNRSuccinea unicolorsquatty ambersnailG2G3SNRSuccinea urbanaurban ambersnailG2G3SNRCounties of occurrence: Montgomery+SNRSNRGlyphyalinia cumberlandianahill glyphG4SNRGlyphyalinia latebricola Counties of occurrence: Jacksonsone glyphG1G2S1S2Glyphyalinia pecki Counties of occurrence: Jeffersonblind glyph ⁷ G1G2S1S2Glyphyalinia specus Counties of occurrence: Jacksonsond buttonG3SNRMesomphix friabilisbrittle buttonG5S1?Mesomphix friabilisbrittle buttonG3SNRParavitrea bidensgray supercoilG1S1Paravitrea nultidentatadentate supercoilG3SNRParavitrea petrophilaCherokee supercoilG4S1Paravitrea pilsbryanatranslucent supercoilG2S2?		S 1	G1G2	rsnail	weedpatch amber	Catinella pugilator
Succinea indianaxeric ambersnailG5SNRSuccinea paraliasaltmarsh ambersnailG2SNRSuccinea unicolorsquatty ambersnailG3SNRSuccinea urbanaurban ambersnailG2G3SNRSuccinea urbanaurban ambersnailG2G3SNRCounties of occurrence:Montgomery+KanterKanterFamily Zonitidaehill glyphG4SNRGlyphyalinia cumberlandianahill glyphG1G2SNRGlyphyalinia latebricola Counties of occurrence:stone glyphG1G2S1S2Glyphyalinia pecki Counties of occurrence:blind glyph?G1G2S1S2Glyphyalinia specus Counties of occurrence:hollow glyphG4SNRGlyphyalinia specus Counties of occurrence:brittle buttonG5S1?Mesomphix friabilisbrittle buttonG3G4S2?Paravitrea bidensgray supercoilG1S1Paravitrea nultidentatadentate supercoilG5S2?Paravitrea petrophilaCherokee supercoilG2S2?		SNR	G4	ail	spotted ambersna	Succinea forsheyi
Succinea paraliasaltmarsh ambersnailG2SNRSuccinea unicolorsquatty ambersnailG3SNRSuccinea urbanaurban ambersnailG2G3SNRCounties of occurrence:Montgomert/G4SNRGlyphyalinia cumberlandianahill glyphG4SNRGlyphyalinia latebricola Counties of occurrence:JacksonG1G2SNRGlyphyalinia packi Counties of occurrence:blind glyph7G1G2S1S2Glyphyalinia specus Counties of occurrence:hollow glyphG4SNRGlyphyalinia specus Counties of occurrence:brittle buttonG5S1?Mesomphix friabilisbrittle buttonG3G4S2?Paravitrea bidensgray supercoilG1S1Paravitrea petrophilaCherokee supercoilG4S1Paravitrea pilsbryanatranslucent supercoilG2S2?		SNR	G3	ail	dryland ambersna	Succinea greerii
Succinea unicolorsquatty ambersnailG3SNRSuccinea urbanaurban ambersnailG2G3SNRCounties of occurrence: Montgomery*G4SNRGlyphyalinia cumberlandianahill glyphG4SNRGlyphyalinia latebricola Counties of occurrence: Jacksonstone glyphG1G2SNRGlyphyalinia pecki Counties of occurrence: Jeffersonblind glyph ⁷ G1G2S1S2Glyphyalinia specus Counties of occurrence: Jacksonhollow glyphG4SNRMesomphix friabilisbrittle buttonG5S1?Mesomphix latiorbroad buttonG3G4S2?Paravitrea bidensgray supercoilG1S1Paravitrea nultidentatadentate supercoilG4S1Paravitrea petrophilaCherokee supercoilG4S1Paravitrea pilsbryanatranslucent supercoilG2S2?		SNR	G5		xeric ambersnail	Succinea indiana
Succinea urbanaurban ambersnailG2G3SNRCounties of occurrence: Montgomery4Family ZonitidaeGlyphyalinia cumberlandianahill glyphG4SNRGlyphyalinia latebricola Counties of occurrence: Jacksonstone glyphG1G2SNRGlyphyalinia pecki Counties of occurrence: Jeffersonblind glyph7G1G2S1S2Glyphyalinia specus Counties of occurrence: Jacksonhollow glyphG4SNRGlyphyalinia specus Counties of occurrence: Jacksonbrittle buttonG5S1?Mesomphix friabilisbrittle buttonG3G4S2?Paravitrea bidens Paravitrea conecuhensisgray supercoilG1S1Paravitrea petrophila Paravitrea petrophilaCherokee supercoilG4S1Paravitrea pilsbryanatranslucent supercoilG2S2?		SNR	G2	snail	saltmarsh ambers	Succinea paralia
Counties of occurrence: Montgomery4Family ZonitidaeGlyphyalinia cumberlandianahill glyphG4SNRGlyphyalinia latebricola Counties of occurrence: Jacksonstone glyphG1G2SNRGlyphyalinia pecki Counties of occurrence: Jeffersonblind glyph7G1G2S1S2Glyphyalinia specus Counties of occurrence: Jacksonhollow glyphG4SNRGlyphyalinia specus Counties of occurrence: Jacksonbrittle buttonG5S1?Mesomphix friabilisbrittle buttonG3G4S2?Paravitrea bidensgray supercoilG1S1Paravitrea conecuhensistriangular supercoilG5S2?Paravitrea nultidentataCherokee supercoilG4S1Paravitrea petrophilaCherokee supercoilG2S2?		SNR	G3	ail	squatty ambersna	Succinea unicolor
Family Zonitidaehill glyphG4SNRGlyphyalinia cumberlandianahill glyphG1G2SNRGlyphyalinia latebricola Counties of occurrence: Jacksonstone glyphG1G2SNRGlyphyalinia pecki Counties of occurrence: Jeffersonblind glyph ⁷ G1G2S1S2Glyphyalinia specus Counties of occurrence: Jacksonhollow glyphG4SNRMesomphix friabilisbrittle buttonG5S1?Mesomphix latiorbroad buttonG3G4S2?Paravitrea bidensgray supercoilG1S1Paravitrea conecuhensistriangular supercoilG5S2?Paravitrea putrophilaCherokee supercoilG4S1Paravitrea pilsbryanatranslucent supercoilG2S2?		SNR	G2G3	1	urban ambersnail	Succinea urbana
Glyphyalinia cumberlandianahill glyphG4SNRGlyphyalinia latebricola Counties of occurrence: Jacksonstone glyphG1G2SNRGlyphyalinia pecki Counties of occurrence: Jeffersonblind glyph7G1G2S1S2Glyphyalinia specus Counties of occurrence: Jacksonhollow glyphG4SNRMesomphix friabilisbrittle buttonG5S1?Mesomphix latiorbroad buttonG3G4S2?Paravitrea bidensgray supercoilG1S1Paravitrea conecuhensistriangular supercoilG5S2?Paravitrea petrophilaCherokee supercoilG4S1Paravitrea pilsbryanatranslucent supercoilG2S2?					Montgomery ⁴	Counties of occurrence:
Glyphyalinia latebricola Counties of occurrence: Jacksonstone glyphG1G2SNRGlyphyalinia pecki Counties of occurrence: Jeffersonblind glyph7G1G2S1S2Glyphyalinia specus Counties of occurrence: Jacksonhollow glyphG4SNRMesomphix friabilisbrittle buttonG5S1?Mesomphix latiorbroad buttonG3G4S2?Paravitrea bidensgray supercoilG1S1Paravitrea rultidentatadentate supercoilG5S2?Paravitrea petrophilaCherokee supercoilG4S1Paravitrea pilsbryanatranslucent supercoilG4S1						-
Counties of occurrence: Jacksonblind glyph7G1G2S1S2Glyphyalinia pecki Counties of occurrence: Jeffersonblind glyph7G1G2S1S2Glyphyalinia specus Counties of occurrence: Jacksonhollow glyphG4SNRMesomphix friabilisbrittle buttonG5S1?Mesomphix latiorbroad buttonG3G4S2?Paravitrea bidensgray supercoilG1S1Paravitrea conecuhensistriangular supercoilG3SNRParavitrea multidentatadentate supercoilG5S2?Paravitrea petrophilaCherokee supercoilG4S1Paravitrea pilsbryanatranslucent supercoilG2S2?		SNR	G4		ia hill glyph	Glyphyalinia cumberlandiar
Counties of occurrence: Jeffersonhollow glyphG4SNRGlyphyalinia specus Counties of occurrence: Jacksonhollow glyphG4SNRMesomphix friabilisbrittle buttonG5S1?Mesomphix latiorbroad buttonG3G4S2?Paravitrea bidensgray supercoilG1S1Paravitrea conecuhensistriangular supercoilG3SNRParavitrea multidentatadentate supercoilG5S2?Paravitrea petrophilaCherokee supercoilG4S1Paravitrea pilsbryanatranslucent supercoilG2S2?		SNR	G1G2			
Mesomphix friabilisbrittle buttonG5S1?Mesomphix latiorbroad buttonG3G4S2?Paravitrea bidensgray supercoilG1S1Paravitrea conecuhensistriangular supercoilG3SNRParavitrea multidentatadentate supercoilG5S2?Paravitrea petrophilaCherokee supercoilG4S1Paravitrea pilsbryanatranslucent supercoilG2S2?		S1S2	G1G2			
Mesomphix latiorbroad buttonG3G4S2?Paravitrea bidensgray supercoilG1S1Paravitrea conecuhensistriangular supercoilG3SNRParavitrea multidentatadentate supercoilG5S2?Paravitrea petrophilaCherokee supercoilG4S1Paravitrea pilsbryanatranslucent supercoilG2S2?		SNR	G4			
Paravitrea bidensgray supercoilG1S1Paravitrea conecuhensistriangular supercoilG3SNRParavitrea multidentatadentate supercoilG5S2?Paravitrea petrophilaCherokee supercoilG4S1Paravitrea pilsbryanatranslucent supercoilG2S2?		S1?	G5		brittle button	Mesomphix friabilis
Paravitrea conecuhensistriangular supercoilG3SNRParavitrea multidentatadentate supercoilG5S2?Paravitrea petrophilaCherokee supercoilG4S1Paravitrea pilsbryanatranslucent supercoilG2S2?		S2?	G3G4		broad button	Mesomphix latior
Paravitrea multidentatadentate supercoilG5S2?Paravitrea petrophilaCherokee supercoilG4S1Paravitrea pilsbryanatranslucent supercoilG2S2?		S 1	G1		gray supercoil	Paravitrea bidens
Paravitrea petrophilaCherokee supercoilG4S1Paravitrea pilsbryanatranslucent supercoilG2S2?		SNR	G3	coil	triangular superce	Paravitrea conecuhensis
Paravitrea pilsbryanatranslucent supercoilG2S2?		S 2?	G5	1	dentate supercoil	Paravitrea multidentata
		S 1	G4	oil	Cherokee superco	Paravitrea petrophila
Paravitrea tantillateasing supercoilG3S1?		S2?	G2	rcoil	translucent super-	Paravitrea pilsbryana
					•	
Paravitrea tiara crowned supercoil G1G2 S1?						
Paravitrea toma sharp supercoil G1 S1					-	
Paravitrea umbilicarisopen supercoilG2SNR						
Paravitrea variabilisopen supercoilG2SIARG2G3S1?				il		

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
Ventridens acerra	glossy dome		G4	SNR		
Ventridens cerinoideus	wax dome		G4	SNR		
Ventridens collisella	sculptured dome		G4	SNR		
Ventridens lasmodon	hollow dome		G4	SNR		
Ventridens lawae	rounded dome		G4	SNR		
Ventridens monodon	blade dome		G2	SNR		
Zonitoides elliottii	green dome		G4	SNR		
Zonitoides lateumbilicatus	striate gloss		G3G4	SNR		

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
Crustaceans						
Class Malacostraca –	Crabs, Krill, Pill Bugs,	Shrimp	, and Re	latives		
ORDER AMPHIPODA - A	mphipods					
Family Crangonyctidae Bactrurus wilsoni	an amphipod	G1G2	S 1			
Crangonyx antennatus	Appalachian Valley cave amphipod	G5	S3S5			
Stygobromus alabamensis	a cave obligate amphipod	G5	SNR			
Stygobromus dicksoni	a cave obligate amphipod	G5	SNR			
Stygobromus exilis	central Kentucky cave amphipod	G5	S 1			
Stygobromus inexpectatus	a cave obligate amphipod	G1	S 1			
Stygobromus smithi	Alabama well amphipod	G2G3	S 1			
Stygobromus vitreus	an amphipod	G4	SNR			
Crayfish & Shrimp						
ORDER DECAPODA - Cr Family Atyidae - Basket Sh	· - ·					
Palaemonias alabamae Counties of occurrence:	Alabama cave shrimp ⁷	G1	S 1	LE	SP	P1
Palaemonias sp.1 Counties of occurrence:	Tuscumbia cave shrimp ⁷ Colbert	G1	S 1			
Family Cambaridae - Cam	barid Crayfish and Crayfishe	s				
Barbicambarus simmonsi	Tennessee bottlebrush crayfish	G1G2	SNR			P1
<i>Cambarellus diminutus</i> Counties of occurrence:	least crayfish Mobile, Washington	G3	S2			P1
<i>Cambarellus lesliei</i> Counties of occurrence:	angular dwarf crawfish Baldwin ⁴ , Mobile ⁴ , Washington	G3	S2			P1
Cambarellus rotatus Counties of occurrence:	twisted dwarf crayfish ⁷ Green Hale, Marengo	G1	S 1			
<i>Cambarellus shufeldtii</i> Counties of occurrence:	Cajun dwarf crayfish Mobile	G5	S2			P2
<i>Cambarus acanthura</i> Counties of occurrence:	thornytail crayfish Baldwin ⁴ , Blount ⁴ , Bullock ⁴ , Call Crenshaw ⁴ , DeKalb, Escambia ⁴ , J Marengo ⁴ , Perry ⁴ , Pike ⁴ , Russell ⁴	Etowah ⁴ , H	ale ⁴ , Jefferso	on ⁴ , Lauderd	ale ⁴ , Limest	one,
Cambarus bartonii Counties of occurrence ⁴	Appalachian brook crayfish Chambers, DeKalb, Lee	G5	S2			
Cambarus cracens Counties of occurrence:	slenderclaw crayfish ⁷ DeKalb ⁴ , Marshall	G1	S1	UR		P1
Cambarus distans Counties of occurrence ⁴	boxclaw crayfish DeKalb, Jackson	G5	S1			P1

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
<i>Cambarus englishi</i> Counties of occurrence:	Tallapoosa crayfish Clay, Cleburne, Randolph, Talla	G3 poosa	S2			P2
<i>Cambarus graysoni</i> Counties of occurrence:	twospot crayfish Lauderdale ⁴ , Limestone ⁴ , Madiso	G5	S 3			
Cambarus hamulatus	slackwater crayfish Chambers, Clay, Cleburne, Lee, Prickly Cave crayfish Blount ⁴ , Jackson ⁴ , Madison, Mar	G3	S3 Sallapoosa S2			P2 P2
Cambarus howardi Counties of occurrence:	Chattahoochee crayfish Chambers , Lee	G3Q	S2			P2
<i>Cambarus jonesi</i> Counties of occurrence:	Alabama cave crayfish ⁷ Colbert, Lauderdale, Limestone,	G2 Madison, M	S2 Iarshall, Mo	UR rgan		P2
Cambarus laconensis Counties of occurrence: Cambarus longirostris Counties of occurrence:	Lacon exit cave crayfish Morgan longnose crayfish Calhoun, Cherokee ⁴ , Cleburne ⁴ , 1	G1 G5Q DeKalb ⁴ , La	S1 S2 uuderdale ⁴ , N	/ladison ⁴ , St.	Clair ⁴	P1 P2
Cambarus ludovicianus Counties of occurrence:	painted devil crayfish Bibb, Dallas, Jefferson, Perry, Sl	G5 nelby, St. Cl	S2 air			
<i>Cambarus manningi</i> Counties of occurrence:	greensaddle crayfish Calhoun, Cherokee, Coosa, Etow	G4 vah, St. Clair	S2 r, Talladega			P2
Cambarus miltus Counties of occurrence:	rusty grave digger Baldwin, Covington, Escambia	G3	S2			
Cambarus parvoculus Counties of occurrence:	mountain midget crayfish Jackson ⁴	G5	S 1			P2
<i>Cambarus pecki</i> Counties of occurrence:	phantom cave crayfish ⁷ Colbert, Lauderdale, Morgan	G1G2	S1S2			P1
Cambarus polychromatus Counties of occurrence:	paintedhand mudbug Pike	G5	S 1			
Cambarus pyronotus Counties of occurrence:	fireback crayfish	G2	S 1			P1
Cambarus rusticiformes Counties of occurrence:	depression crayfish Jackson	G5	S 1			P2
Cambarus scotti Counties of occurrence:	Chattooga River crayfish Calhoun, Cherokee, Cleburne, Sl	G3 helby, St. Cl	S3 air ⁴ , Tallade	ega		
Cambarus speleocoopi Counties of occurrence:		G1	S 1			P2
Cambarus unestami Counties of occurrence:	blackbarred crayfish DeKalb, Jackson	G2	S1			
<i>Cambarus veitchorum</i> Counties of occurrence:	White Spring Cave crayfish ⁷ Limestone	G1	S 1			P1
Creaserinus burrisi Counties of occurrence:	burrowing bog crayfish Baldwin, Mobile, Washington	G3	S 1			P1

⁴ Historic occurrence.
⁷ Alabama endemic.

Alabama Natural Heritage Program® – 2019 Tracking List

		Global	State	Federal	State	SWAP
Scientific Name	Common Name	Rank	Rank	Status	Status	Status
Creaserinus byersi Counties of occurrence ⁴	lavender burrowing crayfish : Baldwin, Conecuh ⁴ , Escambia ⁴ ,	G4 Monroe ⁴ , V	S2 Washington ⁴			P2
Creaserinus danielae Counties of occurrence:	speckled burrowing crayfish Baldwin, Mobile, Perry	G2	S 2	UR		P2
Creaserinus fodiens Counties of occurrence:	digger crayfish Baldwin ⁴ , Bullock ⁴ , Butler ⁴ , Cho Marengo ⁴ , Montgomery ⁴ , Perry ⁴		S3 as, Lamar ⁴ , I	Lauderdale ⁴ ,	Limestone ⁴	, Macon,
Creaserinus oryktes Counties of occurrence ⁴	flatwoods digger Baldwin, Mobile	G4	S 1			
Hobbseus prominens Counties of occurrence ⁴	Prominence Riverlet crayfish : Chilton, Choctaw, Dallas, Green			y, Sumter		P2
Orconectes alabamensis	Alabama crayfish	G5	S 3			
Counties of occurrence: Orconectes australis	Colbert ⁴ , Franklin, Lauderdale, I southern cave crayfish	Lawrence, N G5	Aorgan S3			
Counties of occurrence:	Jackson, Madison, Morgan					
Orconectes chickasawae Counties of occurrence:	Chickasaw crayfish Bibb, Chilton, Choctaw, Clarke,	G5 Dallas, Hal	S2 e, Jefferson,	Pickens, Sur	nter ⁴ , Tusca	aloosa
Orconectes cooperi Counties of occurrence:	Flint River crayfish	G1	S1			P2
Orconectes durelli Counties of occurrence:		G5	S 1			P2
Orconectes forceps Counties of occurrence:	surgeon crayfish Jackson, Lauderdale, Lawrence,	G5 Limestone,	S3 Madison			
Orconectes holti Counties of occurrence:	bimaculate crayfish ⁷ Autauga, Clarke, Conecuh, Dalla Montgomery, Perry, Sumter, Wi		S3 a, Hale, Low	vndes, Maren	go, Monroe	•,
Orconectes jonesi Counties of occurrence:	Sucarnoochee River crayfish Autauga, Choctaw, Clarke, Gree	G3 ne, Mareng	S3 o, Monroe, F	UR Perry ⁴ , Picker	ns ⁴ , Sumter	
Orconectes lancifer Counties of occurrence ⁴	shrimp crayfish : Baldwin, Clarke	G5	S 1			P2
Orconectes mirus Counties of occurrence:	wonderful crayfish Jackson, Lauderdale, Limestone,	G4 Madison	S 3			
Orconectes placidus Counties of occurrence:	bigclaw crayfish Colbert, Jackson, Lawrence, Lin	G5 nestone, Mo	S2 organ			
Orconectes putnami Counties of occurrence:	phallic crayfish Lauderdale, Lawrence, Limestor	G5 ne, Morgan ⁴	S 3			
Orconectes sheltae Counties of occurrence:	Shelta Cave crayfish ⁷ Madison	G1	S 1	UR		P1
Procambarus bivittatus Counties of occurrence ⁴	ribbon crayfish : Baldwin, Bullock, Clarke, Mob	G5 ile, Monroe	S3S4 , Pike, Wash	ington		
Procambarus capillatus Counties of occurrence:	capillaceous crayfish Conecuh ⁴ , Escambia, Monroe ⁴	G3	S2			P2

 ⁴ Historic occurrence.
 ⁷ Alabama endemic

Alabama Natural Heritage Program® – 2019 Tracking List

		Global	State	Federal	State	SWAP
Scientific Name	Common Name	Rank	Rank	Status	Status	Status
Procambarus clemmeri Counties of occurrence:	cockscomb crayfish Mobile, Washington ⁴	G5	S2			P2
Procambarus escambiensis Counties of occurrence ⁴	Escambia crayfish : Baldwin, Escambia	G2	S2			P1
Procambarus evermanni Counties of occurrence:	panhandle crayfish Baldwin, Mobile	G4	S 3			P2
Procambarus hagenianus hagenianus Counties of occurrence:	southeastern prairie crayfish Sumter	G4G5T4	S1			P2
Procambarus hayi Counties of occurrence:	straightedge crayfish	G5	S 1			P2
Procambarus hubbelli Counties of occurrence:	jackknife crayfish Covington	G4	S2			P2
Procambarus hybus	smoothnose crayfish	G5	S 3			P2
<i>Procambarus lagniappe</i> Counties of occurrence:	lagniappe crayfish Baldwin, Pickens, Sumter, Wash	G2 nington	S 1			P2
Procambarus leconteii	Mobile crayfish	G3G4	S 3			P2
Counties of occurrence: <i>Procambarus lewisi</i> Counties of occurrence ⁴	spur crayfish ⁷ Barbour, Bullock, Butler, Lown	G4 Ides, Macon,	S3 Montgome	ry, Russell		P2
Procambarus marthae Counties of occurrence:	crisscross crayfish Dallas, Hale, Monroe, Perry	G3	S2			P2
Procambarus okaloosae Counties of occurrence:	Okaloosa crayfish Butler ⁴ , Covington, Escambia ⁴	G4	S2			P2
Procambarus paeninsulanau Counties of occurrence:		G5	S2			P2
Procambarus penni Counties of occurrence ⁴	pearl blackwater crayfish Mobile, Washington	G3	S2			
Procambarus planirostris	flatnose crayfish	G4	SNR			P2
Procambarus shermani Counties of occurrence:	Gulf crayfish Baldwin ⁴ , Mobile, Washington	G4	S2			
Procambarus suttlusi Counties of occurrence:	Choctawhatchee crayfish Bullock, Coffee, Dale, Geneva, I	G3G4 Henry, Pike	S 3			
Procambarus viaeviridis Counties of occurrence ⁴	vernal crayfish : Lauderdale, Tuscaloosa	G5	S 1			P1
Procambarus vioscai paynei Counties of occurrence:	Payne's Creek crayfish Choctaw, Clarke, Greene ⁴ , Mare	G5T4 ngo, Tuscalo	$S3$ \cos^4			

 ⁴ Historic occurrence.
 ⁷ Alabama endemic

Alabama Natural Heritage Program® – 2019 Tracking List

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
ORDER ISOPODA - Pillbu Family Asellidae Caecidotea alabamensis Caecidotea bicrenata bicren Caecidotea richardsonae	a cave obligate	isopod	G3(G5T3 ppod G	ST4 SN	R	
Family Trichoniscidae Miktoniscus medcofi	a cave isopod Jackson, Madison, Marshall	y cave iso	GN			
Class Ostracoda – Os	tracods					
ORDER PODOCOPIDA - I Family Entocytheridae Dactylocythere arcuata Dactylocythere steevesi	Fresh-water Ostracods a cave obligate a cave obligate		G10 G4			

		Global	State	Federal	State	SWAP
Scientific Name	Common Name	Rank	Rank	Status	Status	Status

Class Arachnida – Spiders, Scorpions, Pseudoscorpions, Harvestmen, Mites

L /	I <i>i</i> I	·	,
ORDER ARANEAE - Spiders Family Ctenidae - Wandering Spiders Anahita punctulata Counties of occurrence: Colbert, Jack	southeastern wandering spider sson, Madison, Marshall, Morgan	G4	SNR
Family Dictynidae - Meshweb Spiders Cicurina minima Counties of occurrence: Calhoun, Jeff	cave spider ferson, Lawrence	GNR	SNR
Cicurina wiltoni	a cave obligate spider	G1	S 1
Family Leptonetidae - Cave Spiders Appaleptoneta barrowsi Counties of occurrence: Blount	a cave spider ⁷	G1	S1
Appaleptoneta credulai Counties of occurrence: Lauderdale	a cave spider ⁷	G1	S1
Appaleptoneta jonesi Counties of occurrence: Jefferson	a cave spider ⁷	G1	S 1
<i>Neoleptoneta alabama</i> Counties of occurrence: Calhoun, De	a cave spider ⁷ Kalb, Marshall	GNR	S1S2
<i>Neoleptoneta archeri</i> Counties of occurrence: Tuscaloosa ⁴	a spider	GNR	SH
<i>Neoleptoneta blanda</i> Counties of occurrence: Blount ⁴	a cave spider ⁷	GNR	SH
Neoleptoneta serena Counties of occurrence: Lauderdale	a cave obligate spider ⁷	G1G2	S1S2
Family Linyphiidae - Sheet Weaver Spi Islandiana muma Counties of occurrence: Colbert, Law	a cave spider	G1G2	S1
Family Mysmenidae - Dwarf Cobweb S Maymena ambita Counties of occurrence: DeKalb, Mac	minute cave spider	GNR	SH
Family Nesticidae - Scaffold Web Spide Nesticus barri Counties of occurrence: Jackson, Mar	a cave obligate spider	G3	S3
<i>Nesticus jonesi</i> Counties of occurrence: Morgan	Cave Spring cave spider ⁷	G1	S 1
Family Tengellidae - Tengellid Spiders Liocranoides archeri Counties of occurrence: Jackson, Mac	Archer's two-clawed spider dison, Marshall	G2	S2
ORDER OPILONES - Harvestmen Family Ceratolasmetidae Hesperonemastoma pallidimaculosa Counties of occurrence: Marshall, Mo	a cave obligate harvestman ⁷ organ	G3	S1?

⁴ Historic occurrence.
⁷ Alabama endemic.

Coiontific Norma	Commercia		Global	State	Federal	State	SWAP Status
Scientific Name	Common Nat	me	Rank	Rank	Status	Status	Status
Family Phalangodidae Bishopella jonesi Counties of occurrence: Phalangodes appalachius	Jackson	cave obligate l					
Counties of occurrence:		euve obligate i	iui vestiliui	050			
ORDER PSEUDOSCORPIC Family Chthoniidae		_					
Aphrastochthonius pecki Counties of occurrence:		cave obligate ps	eudoscorpio	on^7 G1	S1		
Aphrastochthonius tenax Counties of occurrence:		cave obligate ps	eudoscorpic	on G1C	52 S1S2	2	
Apochthonius russelli Counties of occurrence:		cave obligate ps	eudoscorpio	on Gl	S1		
<i>Tyrannochthonius alabamer</i> Counties of occurrence:		pseudoscorpion	7	Gl	S1		
<i>Tyrannochthonius aladdine</i> Counties of occurrence:		cave obligate ps	eudoscorpio	on ⁷ G1	S1		
<i>Tyrannochthonius aralu</i> Counties of occurrence:		cave obligate ps	eudoscorpio	on^7 G1	S1		
<i>Tyrannochthonius archeri</i> Counties of occurrence:		cave obligate ps	eudoscorpio	on^7 G1	S1		
<i>Tyrannochthonius attenuatu</i> Counties of occurrence:		cave obligate ps	eudoscorpio	G^7 G1	S1		
<i>Tyrannochthonius avernico</i> Counties of occurrence:		cave obligate ps	eudoscorpio	on^7 G1	S1		
<i>Tyrannochthonius barri</i> Counties of occurrence:		cave obligate ps	eudoscorpio	on^7 G1	S1		
<i>Tyrannochthonius binocula</i> Counties of occurrence:		cave obligate ps	eudoscorpio	on^7 G1	S1		
<i>Tyrannochthonius chamber</i> Counties of occurrence:		cave obligate ps	eudoscorpic	on^7 G1	S1		
<i>Tyrannochthonius charon</i> Counties of occurrence:		cave obligate ps	eudoscorpic	on^7 G1	S1		
<i>Tyrannochthonius diabolus</i> Counties of occurrence:		a cave obligate p	seudoscorpi	on ⁷ G1C	62 S1S2		
<i>Tyrannochthonius erebicus</i> Counties of occurrence:		a cave obligate p	seudoscorpi	on ⁷ G1	S 1		
<i>Tyrannochthonius felix</i> Counties of occurrence:		a cave obligate p	seudoscorpi	on ⁷ G1	S 1		
<i>Tyrannochthonius floridens</i> Counties of occurrence:		n pseudoscorpion Lee, Marshall, N		G10	52 S1S2		
<i>Tyrannochthonius gnomus</i> Counties of occurrence:		a cave obligate p	seudoscorpi	on ⁷ G1	S 1		

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
<i>Tyrannochthonius halopota</i> Counties of occurrence:		ligate pseudoscorp	ion G1	S 1		
<i>Tyrannochthonius infernalis</i> Counties of occurrence:		ligate pseudoscorpi	ion ⁷ G1	S 1		
<i>Tyrannochthonius jonesi</i> Counties of occurrence:		ligate pseudoscorpi	ion ⁷ G1	S 1		
<i>Tyrannochthonius nergal</i> Counties of occurrence:		ligate pseudoscorpi	ion ⁷ G1	S 1		
<i>Tyrannochthonius orpheus</i> Counties of occurrence:		ligate pseudoscorpi	ion ⁷ G1G	2 S1S2		
<i>Tyrannochthonius osiris</i> Counties of occurrence:		ligate pseudoscorpi	ion ⁷ G1	S1		
<i>Tyrannochthonius parvus</i> Counties of occurrence:		ligate pseudoscorpi	ion ⁷ G1G	2 S1S2		
<i>Tyrannochthonius pecki</i> Counties of occurrence:		ligate pseudoscorpi	ion ⁷ G1	S1		
<i>Tyrannochthonius pholeter</i> Counties of occurrence:		ligate pseudoscorp	ion ⁷ G1	S 1		
<i>Tyrannochthonius pluto</i> Counties of occurrence:		ligate pseudoscorp	ion ⁷ G1G	2 S1S2		
<i>Tyrannochthonius satan</i> Counties of occurrence:		ligate pseudoscorp	ion ⁷ G1	S 1		
<i>Tyrannochthonius sheltae</i> Counties of occurrence:		ligate pseudoscorp	ion ⁷ G1	S 1		
<i>Tyrannochthonius skeletoni</i> Counties of occurrence:		ligate pseudoscorp	ion ⁷ G1	S 1		
<i>Tyrannochthonius stygius</i> Counties of occurrence:		ligate pseudoscorp	ion ⁷ G1	S 1		
<i>Tyrannochthonius tartarus</i> Counties of occurrence:		ligate pseudoscorp	ion ⁷ G1	S 1		
<i>Tyrannochthonius tenuis</i> Counties of occurrence:		ligate pseudoscorp	ion ⁷ G1	S 1		
<i>Tyrannochthonius torodei</i> Counties of occurrence:		ligate pseudoscorp	ion ⁷ G1	S 1		
Family Neobisiidae Alabamocreagris mortis Counties of occurrence:		ligate pseudoscorp	ion ⁷ G1G	2 S1S2		
Alabamocreagris pecki Counties of occurrence:		ligate pseudoscorp	ion ⁷ G1G	2 S1S2		
<i>Lissocreagris persephone</i> Counties of occurrence:		ligate pseudoscorp	ion ⁷ G1	S 1		
<i>Lissocreagris pluto</i> Counties of occurrence:		ligate pseudoscorp	ion ⁷ G1	S1		

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
Lissocreagris subatlantica Counties of occurrence:	a pseudoscorpion Blount, Colbert, Morgan, Shelby		G20	G4 S1S	2	
<i>Microcreagris eurydice</i> Counties of occurrence:	a cave obligate p Jackson	seudoscorp	ion ⁷ G	I S1		
<i>Microcreagris nickajackens</i> Counties of occurrence:		seudoscorp	ion G10	G2 S1S	2	
<i>Minicreagris pumila</i> Counties of occurrence:	a pseudoscorpion Blount, Jackson	1	GN	R S1S	2	
<i>Novobisium ingratum</i> Counties of occurrence:	a pseudoscorpion Jackson	1	GN	R S1		
<i>Trisetobisium fallax</i> Counties of occurrence:	a pseudoscorpion Colbert, Lawrence	1	GN	R S1		

⁷ Alabama endemic.

Alabama Natural Heritage Program® – 2019 Tracking List

Scientific Name	Common Na	ame	Global Rank	State Rank	Federal Status	State Status	SWAP Status
Hexapods - Diplurans, Springtails, and Proturans Class Diplura – Diplurans							
ORDER DIPLURA - Diplu	rans						
Family Campodeidae Litocampa cookei Counties of occurrence:		a dipluran		G	5 S1		
<i>Litocampa henroti</i> Counties of occurrence:		a hexapod ⁷		G10	G2 S1		
<i>Litocampa</i> sp. 1 Counties of occurrence:		a cave dipluran (s b, Jefferson	salamander (cave) G	1 S1		
Class Elliplura – Spri	ngtails						
ORDER COLLEMBOLA -	- 0						
Family Entomobryidae - Slend Pseudosinella argentea Counties of occurrence:		a springtail		GN	IR S1		
Pseudosinella christianseni Counties of occurrence:		a cave obligate on, Morgan	springtail	G	5 S2		
<i>Pseudosinella collina</i> Counties of occurrence:		a springtail n, Jackson, Jeffer	son	GN	IR S1		
<i>Pseudosinella folsomi</i> Counties of occurrence:		a springtail		GN	IR S1		
<i>Pseudosinella nata</i> Counties of occurrence:		a cave obligate	springtail ⁷	G	1 S1		
<i>Pseudosinella pecki</i> Counties of occurrence:		a cave obligate	springtail	G20	G3 S1		
<i>Pseudosinella violenta</i> Counties of occurrence:		a springtail		GN	IR S1		
Sinella barri Counties of occurrence:		a springtail		G	5 S1		
<i>Sinella caeca</i> Counties of occurrence:		a springtail		GN	IR S1		
<i>Tomecerus bidentatus</i> Counties of occurrence:		a springtail t, DeKalb, Jackson	n, Madison,	GN Marshall	IR S2		
<i>Tomocerus dubius</i> Counties of occurrence:		a springtail on, Madison		GN	IR S1		
<i>Tomocerus flavescens</i> Counties of occurrence:		a springtail n, Marshall		GS	5? S1		
<i>Tomocerus lamelliferus</i> Counties of occurrence:		a springtail		GN	IR S1		
Family Hypogastruridae <i>Hypogastrura denticulate</i> Counties of occurrence:		a springtail		GN	IR S1		

Scientific Nome	Common Name	Global Rank	State Rank	Federal Status	State	SWAP Statua
Scientific Name	Common Name	Kalik	Kalik	Status	Status	Status
Schaefferia alabamensis Counties of occurrence:		ve obligate springtail	G10	52 S1		
Schaefferia christianseni Counties of occurrence:		ve obligate springtail	7 G1	S1		
Family Isotomida						
<i>Folsomia candida</i> Counties of occurrence:	-	ringtail	GN	R S1		
<i>Folsomia</i> sp. 1 Counties of occurrence:	•	ringtail	GN	R S1		
Family Onychiuridae						
<i>Onychiurus janus</i> Counties of occurrence:		ve obligate springtail	G20	G3 S1		
<i>Onychiurus paro</i> Counties of occurrence:		ve obligate springtail	7 G1	S1		
Family Sminthuridae						
Arrhopalites pygmaeus Counties of occurrence:	•	ringtail dison, Marshall	GN	R S2		
Arrhopalites whitesidei Counties of occurrence:		ringtail	GN	R S1		

⁷ Alabama endemic.

Alabama Natural Heritage Program® – 2019 Tracking List

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
Class Insecta – True I	Insects					
ORDER COLEOPTERA - Family Carabidae - Ground	d Beetles					
Anillinus valentinei Counties of occurrence:	a cave oblig DeKalb, Jefferson	ate beetle	G3G	4 S1		
Pseudanophthalmus alabam Counties of occurrence:		etle	G2	S2		
Pseudanophthalmus alladin Counties of occurrence:		gate beetle	G3G	54 S2		
Pseudanophthalmus assimil Counties of occurrence:		Valley cave be	eetle G1C	62 S1		
Pseudanophthalmus disting Counties of occurrence:		etle	G1G	32 S1		
Pseudanophthalmus fluviati Counties of occurrence:		ate beetle	G3	S 2		
Pseudanophthalmus lodingi Counties of occurrence:	e	etle	G1G	32 S1S2	2	
Pseudanophthalmus meridia Counties of occurrence:		ate beetle	G2	S2		
Pseudanophthalmus nickaja Counties of occurrence:	÷	Cave beetle	G1	S 1		
Pseudanophthalmus profune Counties of occurrence:		ate beetle	G2	S2		
Pseudanophthalmus sequoy Counties of occurrence:		ave beetle ⁷	G1	S 1		
Pseudanophthalmus steeves Counties of occurrence:		gate beetle ⁷	G1G	82 S1S2	2	
<i>Rhadine caudata</i> Counties of occurrence:	a ground be Blount, Colbert, DeKalb, Jac		G3 , Limestone, 1			
<i>Rhadine larvalis</i> Counties of occurrence:	a beetle Conecuh		GNI	R S1		
Family Cerambycidae - Lor Dryobius sexnotatus	-	longhorn beetl	e GNI	R SH		
Family Cicindelidae - Tiger		iongnorn been		X 511		
Cicindela blanda	sandbar tige	er beetle	G3G	4 SNR		
Cicindela dorsalis saulcyi	-	ch tiger beetle	G3G4 2T3	3		
Cicindela hamata lacerata	coastal tiger		G5T			
Cicindela lepida	ghost tiger l		G4			
<i>Cicindela marginipennis</i> Counties of occurrence:		tiger beetle	G2	S1	UR	
Cicindela nigrior	autumn tige		G2G			
Cicindela wapleri	white sand	tiger beetle	G3G	4 SNR		

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
Family Dytiscidae - Predact						
Heterosternuta folkertsi	Folkerts' hydroporus di	•	G10			
Laccophilus schwarzi	Schwarz' diving beetl	e	GN	R SNR	ł	
Family Elmidae - Riffle Bee Stenelmis gammon	e tles Gammon's stenelmis rif	fle beetle	G10	53 S1S2	2	
Family Eucnemidae - False Dicranopselaphus variegatus	Click Beetles variegated false water pen	ny beetle	G10	G3 S1S3	3	
Family Gyrinidae - Whirlig Spanglerogyrus albiventris	jig Beetles primitive whirligig be	eetle	G10	G3 S1S2	2	
Family Leiodidae - Round I	Fungus Beetles, Small Carrie	on Beetles,	Mammal-r	nest Beetles	5	
Catops gratiosa	a beetle Colbert, DeKalb, Jackson, Madia		GN			
<i>Ptomaphagus cavernicola</i> Counties of occurrence:	a cave carrion beetle Morgan		G4	4 S1		
Ptomaphagus chromolithus Counties of occurrence:	a cave obligate beetle Jackson		G20	53 S2		
Ptomaphagus episcopus Counties of occurrence:		7	G10	G2 S1S2	2	
Ptomaphagus hatchi Counties of occurrence:	a cave obligate beetle Jackson, Madison		Gâ	3 S3		
Ptomaphagus hazelae Counties of occurrence:	a cave obligate beetle Jackson	7	G10	G2 S1S2	2	
<i>Ptomaphagus julius</i> Counties of occurrence:	a cave obligate beetle Jackson	7	G10	G2 S1S2	2	
<i>Ptomaphagus laticornis</i> Counties of occurrence:	a cave obligate beetle Jackson, Madison	7	G10	G2 S1		
<i>Ptomaphagus lodingi</i> Counties of occurrence:	a cave obligate beetle Madison	7	G10	G2 S1S2	2	
Ptomaphagus longicornis Counties of occurrence:	a cave obligate beetle Jackson, Madison	7	G30	G4 S2		
Ptomaphagus solanum Counties of occurrence:	a cave obligate beetle Jackson	7	Gi	I S1		
Ptomaphagus torodei Counties of occurrence:	a cave obligate beetle Jackson	7	G10	G2 S1S2	2	
Ptomaphagus valentinei Counties of occurrence:	a cave obligate beetle Jackson, Marshall	7	G30	54 S2		
Ptomaphagus walteri Counties of occurrence:	a cave obligate beetle Blount	7	G10	G2 S1S2	2	
Ptomaphagus whiteselli Counties of occurrence:	a cave obligate beetle DeKalb		G20	G3 S1		
Family Scarabaeidae - Scarab Beetles						
Onthophagus polyphemi	onthophagus tortoise scarab beetle	commensal	GN	R SNR	2	

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
Family Silphidae - Large C Nicrophorus americanus	arrion and Burying Beetles American burying beetle	G2G3	SH	LE, UR ⁵⁰	SP	EX
Family Staphylinidae - Rov Arianops ashei	a beetle ⁷	GNR	S 1			
Counties of occurrence: Arianops barri Counties of occurrence:	a beetle ⁷	GNR	S 1			
Arianops cavernensis Counties of occurrence:	a cave obligate beetle ⁷	GNR	S 1			
Arianops clintoni Counties of occurrence:	a beetle ⁷ Monroe	GNR	S 1			
Arianops extera Counties of occurrence:	a beetle ⁷ Jackson	GNR	S 1			
Arianops folkertsi Counties of occurrence:	a beetle ⁷ Walker	GNR	S 1			
Arianops kingi Counties of occurrence:	a beetle ⁷ St. Clair	GNR	S 1			
Arianops steevesi Counties of occurrence:	a cave obligate beetle ⁷ Jackson	GNR	S 1			
Atheta alabama Counties of occurrence:	a beetle Morgan	GNR	S 1			
Atheta lucifuga Counties of occurrence:	light shunning rove beetle Blount, Jackson, Madison, Mars	G4 shall	S2			
Batriasymmodes spelaeus Counties of occurrence:	a cave obligate beetle Blount, DeKalb, Jackson, Lauder Winston	G3G4 rdale, Lawre	S3 ence, Marsha	all, Morgan, S	St. Clair,, V	Valker,
Batriasymmodes troglodytes Counties of occurrence:		G1G2	S 1			
Batrisodes cavernosus Counties of occurrence:	a cave obligate beetle ⁷ Butler, Clarke	G1	S 1			
<i>Batrisodes jocuvestus</i> Counties of occurrence:	a cave obligate beetle ⁷ Madison	G1	S 1			
<i>Batrisodes jonesi</i> Counties of occurrence:	a cave obligate beetle ⁷ Colbert	G2G3	S2S3			
Batrisodes lineaticollis Counties of occurrence:	a beetle Calhoun, Conecuh	GNR	S 1			
Batrisodes profundus Counties of occurrence:	a cave obligate beetle ⁷ Conecuh	G1G2	S1S2			
<i>Batrisodes specus</i> Counties of occurrence:	a cave obligate beetle Colbert, Jackson, Madison, Mars	G3G4 shall	S2			
Batrisodes subterraneus Counties of occurrence:	a cave obligate beetle Marshall	G1	S 1			

⁷ Alabama endemic.

 ⁵⁰ On 16 March 2016, the U.S. Fsih & Wildlife Service published a 90-day finding in the Federal Register indicating that delisting *Nicrophorus americanus* may be warranted based on a lack of threats under any of the five listing factors, and initiated a status review to determine if delisting is warranted.

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
<i>Batrisodes tumoris</i> Counties of occurrence:	a beetle ⁷ Colbert		G1	S 1		
Batrisodes valentinei Counties of occurrence:	a cave obligate Jackson, Madison, Morgan	beetle	G20	4 S2		
<i>Lesteva pallipes</i> Counties of occurrence:	a beetle Jackson, Madison, Marshall		GN	R S1		
<i>Quedius erythrogaster</i> Counties of occurrence:	a beetle Blount, Colbert, Jackson, Madis	on, Marshall	GN	R S3		
<i>Quedius fulgidis</i> Counties of occurrence:	a beetle Calhoun		GN	R S1		
Speleobama vana Counties of occurrence:	a cave obligate Jefferson	beetle ⁷	G1	S 1		
Speleochus croceus Counties of occurrence:	a cave obligate Madison	beetle ⁷	G10	52 S1S2	2	
Speleochus stygicus Counties of occurrence:	a cave obligate Madison	beetle ⁷	G10	52 S1S2	2	
Speleochus synstygicus Counties of occurrence:	a cave obligate Madison	beetle ⁷	G1	S1		
Subterrochus eurous Counties of occurrence:	a cave obligate Jackson	beetle ⁷	G20	3 S1		
Subterrochus ferus Counties of occurrence:	a cave obligate Jackson, Madison	beetle	G10	52 S1S2	2	
Subterrochus steevesi Counties of occurrence:	a cave obligate Marshall	beetle	G4	SNF	ł	
<i>Tmesiphorus costalis</i> Counties of occurrence:	a beetle Marshall, Morgan		GN	R SNF	ł	
<i>Tychobythinus jonesi</i> Counties of occurrence:	a cave obligate Colbert	beetle ⁷	G10	52 S1S2	2	
ORDER DIPTERA - True						
Family Mycetophilidae - Fu Rymosia triangularis Counties of occurrence:	a fungus gnat		GN	R S1		
Family Sphaeroceridae Spelobia tenebrarum Counties of occurrence:	a cave obligate Jackson, Madison	fly	G5	S2		
ORDER EMPHEMEROPTI	ERA - Mayflies					
Family Baetiscidae	CI			2 01		
Baetisca becki Family Behningiidae	a mayfly		G2C	3 S1		
Dolania americana Family Ephemerellidae	American sand bu	rrowing mayfl	у G4	S1		
Serratella frisoni Family Isonychiidae	Frison's serrate	llan mayfly	G4	SH		
Isonychia berneri	a mayfly		G20	3 SNF	2	

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status		
Family Oligoneuriidae								
Homoeoneuria cahabensis	Cahaba sand-filtering mayfly	G2G3	S1S2					
ORDER LEPIDOPTERA - Family Hesperiidae - Skipp								
Amblyscirtes alternata	dusky roadside-skipper	G2G3	S2S3					
Atrytone arogos arogos	arogos skipper	G3T1T2	SH					
Autochton cellus	golden-banded skipper	G4	S2					
Euphyes arpa	palmetto skipper	G3G4	SNR					
Euphyes dukesi dukesi	Dukes' skipper	G3T3	SNR					
Euphyes pilatka	palatka skipper	G3G4	S3S4					
Hesperia meskei	Meske's skipper	G2G4	S3?					
Problema byssus	byssus skipper	G3G4	S2S3					
Family Lycaenidae - Gossamer-winged Butterflies								
Callophrys hesseli	Hessel's hairstreak	G3G4	SNR					
Callophrys irus	frosted elfin	G3	SU					
Feniseca tarquinius	harvester	G4	SU					
Satyrium kingi	King's hairstreak	G3G4	S2S3					
Counties of occurrence:	Chilton							
Family Noctuidae - Noctuid <i>Pyreferra ceromatica</i>	and Owlet Moths anointed sallow moth	GU	SU					
<i>Scoliopteryx libatrix</i> Counties of occurrence:	a moth Jackson, Madison	G5	S2					
Family Nymphalidae								
Chlosyne gorgone gorgone	gorgone checkerspot	G5T2T3Q	S 1					
<i>Enodia creola</i> Counties of occurrence:	Creole pearly eye Chilton	G3G4	SU					
Neonympha areolata	Georgia satyr	G3G4	SU					
<i>Neonympha mitchellii</i> Counties of occurrence:	Mitchell's satyr Bibb, Hale, Perry, Tuscaloosa	G2	S1S2	LE	SP	P1		
Speyeria diana Counties of occurrence:	Diana Calhoun, Clay, Etowah	G3G4	S2					
Family Pieridae - Sulphurs	and Whites							
<i>Pieris virginiensis</i> Counties of occurrence:	West Virginia white Covington, Geneva, Mobile	G3?	SNR					
Family Saturniidae - Giant	•		~~~~					
Hemileuca maia maia	Coastal Barrens buckmoth	G5T5	SNR					
ORDER ODONATA - Dragonflies and Damselflies Family Coenagrionidae - Narrow-winged Damselflies, Pond Damselflies Argia plana springwater dancer G5 S1 Counties of occurrence: Jefferson								

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status				
		NallA	NallA	Status	Status	Status				
Family Cordulegasteridae - Cordulegaster obliqua fasciata		G4T3Q	S 3?							
Family Corduliidae - Green <i>Epitheca spinosa</i> Counties of occurrence:	n-eyed Skimmers robust baskettail Covington, Escambia, Tuscaloosa	G4	S2S3							
	smoky shadowdragon Baldwin, Colbert, Elmore, Greend Tuscaloosa	G4 e, Jackson, L	S3 Lauderdale, 1	Macon, Mon	roe, Perry,	Sumter,				
Somatochlora calverti Counties of occurrence:	Calvert's emerald	G3	S1S2	UR						
Somatochlora georgiana Counties of occurrence:	coppery emerald Tuscaloosa	G3G4	S3S4							
Somatochlora hineana Counties of occurrence:	Hine's emerald Jackson ³	G2G3	SH	LE	SP	P1				
	treetop emerald Bibb, Calhoun,, Chilton, Clay, Cl Marengo, Monroe, Talladega, Tus		S3S4 ington, Dale	e, Escambia,	Fayette, La	mar,				
Family Gomphidae - Clubt Gomphus consanguis Counties of occurrence:	Cherokee clubtail	G3	S1S2	UR						
<i>Gomphus crassus</i> Counties of occurrence:	handsome clubtail Jackson, Lauderdale, Madison	G3G4	S 3							
<i>Gomphus geminatus</i> Counties of occurrence:	twin-striped clubtail Covington, Escambia	G3G4	S2							
Gomphus hodgesi	Hodges' clubtail	G3	S3?							
Gomphus hybridus	cocoa clubtail	G4	S3S4							
Gomphus modestus	Gulf Coast clubtail	G3G4	S3?							
Gomphus quadricolor	rapids clubtail	G3G4	S 1							
<i>Gomphus septima</i> Counties of occurrence:	Septima's clubtail Bibb, Tuscaloosa ⁴	G2	S1S2	UR						
Gomphus viridifrons	green-faced clubtail	G3G4	S3?							
Ophiogomphus acuminatus	acuminate snaketail	G3	S1S2							
Ophiogomphus incurvatus alleghaniensis	Allegheny snaketail	G3T2T3	S1S2	UR						
Counties of occurrence: Blount, Clay, Cleburne, Tuscaloosa										
Ophiogomphus mainensis	Maine snaketail	G4	SNR							
Progomphus bellei	Belle's sanddragon	G3	SH							
Stylurus laurae	Laura's clubtail	G4	SH							
Stylurus notatus	elusive clubtail	G3	SH							
Stylurus townesi	Townes' clubtail	G3	S1S2							

⁴ Historic occurrence.

Scientific Name	Common Na	ame	Global Rank	State Rank	Federal Status	State Status	SWAP Status
Family Libellulidae - Comm Nannothemis bella	non Skimmer elfin skimme		G4	SNR			
Family Macromiidae Macromia margarita		mountain river	cruiser	G3	SNR		
ORDER ORTHOPTERA -		s, Locusts, and		U.	5141		
Family Rhaphidophoridae - Ceuthophilus latens Counties of occurrence:		kets a camel cricket		GN	R S1		
<i>Ceuthophilus stygius</i> Counties of occurrence:	Jackson, Madis	a cricket		GN	R S2		
<i>Euhadenoecus putaneus</i> Counties of occurrence:	DeKalb, Jacks	a cave cricket		GN	R S1		
ORDER PLECOPTERA - Family Capniidae – Small W		ies					
Allocapnia sano Counties of occurrence:		Sano stonefly ⁷		Gl	S1		
Amphinemura alabama Counties of occurrence:	Lauderdale, Li	Alabama Forest mestone	fly	Gã	S S2		
Amphinemura mockfordi Counties of occurrence:	Madison	Tennessee fores	stfly	G2	S1	UR	ł
Family Perlidae - Common Beloneuria jamesae Counties of occurrence:		Cheaha beloneur , Cleburne, Tallad	•	G1C	52 S1S2	2	

⁷ Alabama endemic.

		Global	State	Federal	State	SWAP
Scientific Name	Common Name	Rank	Rank	Status	State	Status
Class Diplopoda – Mi						
ORDER CHORDEUMATIE Family Cleidogonidae	DA					
<i>Pseudotremia eburnea</i> Counties of occurrence:	a cave obligate Jackson, Marshall	millipede	G20	G4 SNI	R	
<i>Pseudotremia minos</i> Counties of occurrence:	a cave obligate	millipede	Gl	S1		
<i>Pseudotremia nyx</i> Counties of occurrence:	a cave obligate Marshall	millipede ⁷	G1	S 1		
Pseudotremia rhadamanthu Family Trichopetalidae	a cave obligate	millipede	G10	G2 SNI	ર	
Scoterpes austrinus austrinu Counties of occurrence:		millipede	G3G4T	3T4 SN	R	
ORDER JULIDA						
Family Zosteractinidae Ameractis satis Counties of occurrence:	a cave obligate Jackson, Marshall	millipede	G20	G4 SNI	R	

Class Oligochaeta – Terrestrial and Freshwater Worms

ORDER BRANCHIOBDELLIDA Family Branchiobdellidae

······································			
Cambarincola sheltensis	a cave obligate worm	G1G2	S1S2

⁷ Alabama endemic.

Alabama Natural Heritage Program® – 2019 Tracking List

		Global	State	Federal	State	SWAP
Scientific Name	Common Name	Rank	Rank	Status	Status	Status

Vascular Plants

Ferns & Relatives

Class Filicopsida – Ferns ORDER FILICALES Family Aspleniaceae - Spleenwort Famil	v			
Asplenium abscissum Counties of occurrence: Jackson	cutleaf spleenwort	G3G4	S 1	
Asplenium bradleyi Counties of occurrence: Etowah, Jacks	Bradley's spleenwort on, Talladega	G4	S2	
Asplenium monanthes Asplenium ruta-muraria Counties of occurrence: Bibb, Etowah,	single-sorus spleenwort wall rue spleenwort Jackson	G4 G5	S1 S1	
Asplenium scolopendrium var. americanum Counties of occurrence: Jackson, Morg		G4T3	S 1	LT
Asplenium trichomanes Counties of occurrence: Etowah, Jacks	maidenhair spleenwort on, Talladega, Tuscaloosa	G5	S2S3	
Asplenium tutwilerae Counties of occurrence: Hale	Scott's spleenwort ⁷	G1	S1	
Family Dryopteridaceae - Wood Fern F <i>Cystopteris tennesseensis</i> Counties of occurrence: Jackson, Morg	Tennessee bladderfern	G5	S2	
Dryopteris celsa Counties of occurrence: Blount, Chero Montgomery,		G4 , Lawrence, L	S2 Limestone, 1	Marion, Monroe,
Family Hymenophyllaceae - Filmy Fern <i>Hymenophyllum tayloriae</i> Counties of occurrence: Franklin, Lam	gorge filmy fern	G2	S1	
<i>Trichomanes petersii</i> Counties of occurrence: Cleburne, Def Marshall, Pick	dwarf filmy-fern Kalb, Etowah, Fayette, Franklin, Jac tens, Tuscaloosa, Winston	G4G5 kson, Lamar,	S2 Lawrence,	Marion,
Family Lygodiaceae - Climbing Fern Fa Lygodium palmatum Counties of occurrence: Clay, Cleburn	climbing fern	G4	S1	
Family Osmundaceae - Royal Fern Fam Osmunda claytoniana Counties of occurrence: Jackson	ily interrupted fern	G5	S1	
Family Pteridaceae - Maidenhair Fern F Astrolepis x integerrima Counties of occurrence: Bibb	F amily hybrid cloak fern	НҮВ	S1	
Family Thelypteridaceae - Marsh Fern I <i>Thelypteris ovata</i> Counties of occurrence: Bibb, Clarke,	ovate marsh fern	G3G5 ouston, Monro	S3 e, Washing	ton

⁷ Alabama endemic.

Scientific Name	Common Na	me	Global Rank	State Rank	Federal Status	State Status	SWAP Status
Stegnogramma burksiorum Counties of occurrence: V		Alabama streak	-sorus fern	⁷ G1	S1	LT ⁵	51
ORDER MARSILEALES Family Marsileaceae		•					
Pilularia americana		American pillw	ort	G5	S1		
Class Ophioglossopsida	– Succul	lent Ferns					
ORDER OPHIOGLOSSALE Family Ophioglossaceae - Ac Botrychium jenmanii Counties of occurrence: H	lder's-tongue	Alabama grapef		G3C	54 S1		
<u>Class Psilotopsida – W</u>	hiskferns						
ORDER PSILOTALES Family Psilotaceae - Whiskfe Psilotum nudum Counties of occurrence: I	Lee	whiskfern		G5	S1		
Class Isoetopsida – Qu	illworts &	Spike-moss					
ORDER ISOETALES Family Isoetaceae - Quillwor	•t Family						
Isoetes appalachiana Counties of occurrence: I	-	Appalachian qu h, Tallapoosa	illwort	G4	S1		
<i>Isoetes butleri</i> Counties of occurrence: I		Butler's quillwo Lawrence, Morga		G4	S2		
<i>Isoetes flaccida</i> Counties of occurrence: I		southern quillw	ort	G3	S1		
Isoetes hyemalis Counties of occurrence: I		winter quillwor	t	G20	33 S1	UR	2
Isoetes louisianensis Counties of occurrence: O		Louisiana quilly	wort	G20	3 S1	LE	
<i>Isoetes virginica</i> Counties of occurrence: 0		Piedmont quillv Randolph, Tallap		G3	S2		
ORDER SELAGINELLALES							
Family Selaginellaceae - Spil		-		<u> </u>			
Selaginella arenicola ssp. ria Counties of occurrence: O		Riddell's spike- lin, Geneva, Lee,		G4T ilcox, Winsto			

⁷ Alabama endemic.

⁵¹ Thelypteris burksiorum was listed (as T. pilosa var. alabamensis) as threatened under the federal Endangered Species Act in 1992. Watkins and Farrar (2002) elevated the Alabama variety of T. pilosa to specific status as T. burksiorum. The U.S. Fish and Willdife Service still uses T. pilosa var. alabamensis as the species name on their website.

		~ · · ·	~		~	G7774 75
		Global	State	Federal	State	SWAP
Scientific Name	Common Name	Rank	Rank	Status	Status	Status
Selaginella ludoviciana Counties of occurrence:	Gulf spike-mos Baldwin, Conecuh, Henry, Hous		G30	54 S1S	2	
Selaginella rupestris	ledge spike-mos	SS	G5	5 S2		
· ·	Chambers, Franklin, Lee, Marior		sa			
Class Lycopodiopsida ORDER LYCOPODALES Family Lycopodiaceae - Che Diphasiastrum tristachyum Counties of occurrence:	ibmoss Family deep-root clubn Jackson		GS	~ -		
<i>Huperzia lucidula</i> Counties of occurrence:	shining clubmor Franklin, Lawrence, Marion, Win		GS	5 S2		
<i>Huperzia porophila</i> Counties of occurrence:	rock clubmoss Franklin, Lawrence, Marion, Wa	lker, Winst	G4	S1		
Lycopodium obscurum	tree clubmoss		GS	5 S1		

Class Equisetopsida – Horsetails

ORDER EQUISETALES Family Equisetaceae - Ho

Family Equisetaceae - H	orsetail Family		
Equisetum arvense	field horsetail	G5	S2
Counties of occurren	e: Calhoun, Greene, Hale, Jackson, Jefferson, M	larshall, Morgan	

Class Monocotyledoneae - Monocots

ORDER ALISMATALES Family Alismataceae - Water-plantain Echinodorus parvulus	F amily dwarf burhead	G3Q	S 1	
Counties of occurrence: Barbour, Cov		050	51	
Sagittaria isoetiformis Counties of occurrence: Covington, H	slender arrow-head enry, Houston	G4?	S2	
Sagittaria secundifolia Counties of occurrence: Cherokee, Co		G1	S 1	LT
Family Tofieldiaceae - False Asphodel I	•	~ .	~ . ~ ~	
Pleea tenuifolia Counties of occurrence: Baldwin, Esc	rush false-asphodel ambia	G4	S1S2	
ORDER ARALES Family Araceae - Arum Family Peltandra sagittifolia Counties of occurrence: Baldwin, Cov	spoon-flower vington, Dale, Escambia, Geneva, Mo	G3G4 bile	S2	
ORDER ASPARAGALES Family Amaryllidaceae - Amaryllis Far	nily			
Allium speculae Counties of occurrence: Cherokee, De	Little River Canyon onion Kalb, Jackson, Marshall	G2	S2	
Allium tricoccum Counties of occurrence: Jackson, Mar	wild leek shall	G5	S 1	

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
Hymenocallis choctawensis Counties of occurrence:	panhandle spid	er-lily	G3C	54 S1		
Hymenocallis coronaria	shoals spider-li Bibb, Blount, Chilton, Coosa, C Tallapoosa		G20 ferson, Lee, R	•	elby, Tallad	ega,
Family Asparagaceae - Asp	aragus Family					
<i>Schoenolirion croceum</i> Counties of occurrence:	yellow sunnyb Bibb, Blount, Colbert, DeKalb,		G4 ckson, Lawre		n, Morgan,	Sumter
Schoenolirion wrightii Counties of occurrence:	Texas sunnybe Cherokee, DeKalb, Etowah, Ma		G3	8 S1		
ORDER COMMELINALES						
Family Commelinaceae - Sp	•		C	2 61		
Tradescantia ernestiana Counties of occurrence:	Ernest's spider DeKalb, Etowah, Jackson, Jeffe		G3 on, Montgom			
Family Xyridaceae - Yellow		,	ý - E	5		
Xyris chapmanii	Chapman's yello Baldwin, Covington, Escambia,	• •	ss G3	S S1		
<i>Xyris drummondii</i> Counties of occurrence:	Drummond's yel Baldwin, Covington, Escambia,					
<i>Xyris isoetifolia</i> Counties of occurrence:	quillwort yello Covington	w-eyed gra	ass G1	SH		
<i>Xyris longisepala</i> Counties of occurrence:	Kral's yellow-e	eyed grass	G20	53 S1	UR	
<i>Xyris scabrifolia</i> Counties of occurrence:	Harper's yellow Baldwin, Covington, Escambia,			S S1S2	2	
<i>Xyris serotina</i> Counties of occurrence:	acid-swamp yell Houston	ow-eyed gra	ass G3C	54 S1		
<i>Xyris spathifolia</i> Counties of occurrence:	a yellow-eyed Bibb	grass ⁷	G1	S1		
<i>Xyris tennesseensis</i> Counties of occurrence:	Tennessee yell Bibb, Calhoun, Franklin, Shelby		rass G2	2 S1	LE	
ORDER CYPERALES						
Family Cyperaceae - Sedge	-		C 5	C 1		
Bolboschoenus fluviatilis Counties of occurrence:	river bulrush Morgan		G5	5 S1		
Bulbostylis warei Counties of occurrence:	Ware's hairsed Baldwin	ge	G3C	54 S1		
<i>Carex acidicola</i> Counties of occurrence:	a sedge Bibb, Lee, Tuscaloosa		G20	53 S1		
<i>Carex aggregata</i> Counties of occurrence:	glomerate sedg Macon	je	G5	5 S1		
<i>Carex austrocaroliniana</i> Counties of occurrence:	South Carolina Jackson	sedge	G4	S2?		

				G((G .	CITILAT
Scientific Name	Common Nar	ne	Global Rank	State Rank	Federal Status	State Status	SWAP Status
<i>Carex baltzellii</i> Counties of occurrence:		Baltzell's sedge ike		G3	S S1		
<i>Carex barrattii</i> Counties of occurrence:		Barratt's sedge o, Geneva, Winst	on	G4	S1		
<i>Carex brysonii</i> Counties of occurrence:		Bryson's sedge ⁷ lker, Winston		G1	S1	UR	
<i>Carex decomposita</i> Counties of occurrence:		cypress-knee se y, Jackson, Jeffer		G3C on, Talladeg			
<i>Carex eburnea</i> Counties of occurrence:		ebony sedge ickson, Sumter		G5	5 S2		
<i>Carex exilis</i> Counties of occurrence:		coast sedge		G5	5 S1		
<i>Carex fissa</i> var. <i>aristata</i> Counties of occurrence:		nammock sedge	:	G4?T	4? S1		
<i>Carex godfreyi</i> Counties of occurrence:		Godfrey's sedge on, Montgomery		G3C	54 S2		
<i>Carex impressinervia</i> Counties of occurrence:		mpressed-nerve Butler, Chilton, N	U	G2 sell, Wilcox		UR	
<i>Carex purpurifera</i> Counties of occurrence:		ourple sedge on, Marshall		G4	? S2		
<i>Carex socialis</i> Counties of occurrence: Marshall, Montgomery,	Bullock, Butler,	ocial sedge Calhoun, Colber	t, Coosa, Da	G4 allas, Greene	~=	ladison, Ma	irengo,
<i>Carex striata</i> Counties of occurrence:		Walter's sedge n, Mobile		G4C	35 S1		
Carex thornei		ı sedge		G2C	53 S1		
Counties of occurrence: <i>Carex vestita</i>	•	velvety sedge		G5	5 S1		
<i>Cladium mariscoides</i> Counties of occurrence:	ť	wig rush		G5			
Cyperus granitophilus Counties of occurrence:	•	granite-loving fl okee, Tallapoosa	÷	G3G4	4Q S2		
Cyperus tetragonus Counties of occurrence:		Four-angle flats	edge	G4	? S1		
<i>Eleocharis melanocarpa</i> Counties of occurrence:		black-fruited spi	ike-rush	G4	S1		
<i>Eleocharis olivacea</i> Counties of occurrence:		capitate spikeru	sh	G5	5 S1		
<i>Eleocharis robbinsii</i> Counties of occurrence:		Robbins' spikert Mobile	ısh	G4C	35 S1		
<i>Eleocharis rostellata</i> Counties of occurrence:		beaked spikerus	h	G5	5 S1		
<i>Eleocharis wolfii</i> Counties of occurrence:		Wolf's spikerusl	1	G3C	35 S1		

Alabama Natural Heritage Program® – 2019 Tracking List

Scientific Name	Common Nat	me	Global Rank	State Rank	Federal Status	State Status	SWAP Status
<i>Fimbristylis brevivaginata</i> Counties of occurrence:		glade fimbristyl	is	G2	S1		
<i>Fimbristylis perpusilla</i> Counties of occurrence:		Harper's fimbry	7	G2	S 1		
<i>Rhynchospora alba</i> Counties of occurrence:		white beakrush		G5	S1		
<i>Rhynchospora capillacea</i> Counties of occurrence:		norned beakrusl	n	G4	S 1		
<i>Rhynchospora crinipes</i> Counties of occurrence:		nairy-pedunclec uh, Covington, E		G2 obile, Washin		UR	
Rhynchospora fernaldii Counties of occurrence:		Fernald's beak r	ush	G3G	4 S1		
Rhynchospora globularis va Counties of occurrence:		Stone Mountain	beakrush	G3(Q S1		
<i>Rhynchospora harperi</i> Counties of occurrence:		Harper's beakru	ish	G43	? S1		
<i>Rhynchospora macra</i> Counties of occurrence:		southern white l	beak rush	G3	S 1		
<i>Rhynchospora pleiantha</i> Counties of occurrence:		orown beakrush gton, Houston	L	G2G	3 S1		
<i>Rhynchospora stenophylla</i> Counties of occurrence:		Chapman beakr gton, Escambia, (G4 bile	S2		
Rhynchospora thornei Counties of occurrence:		Thorne's beakru , Geneva	sh	G3	S1	UR	
Rhynchospora tracyi Counties of occurrence:		Fracy's beak rus on, Mobile	sh	G4	S1		
Schoenoplectus subtermina. Counties of occurrence:		water bulrush		G4G	5 S1		
Family Poaceae - Grass Fan Amphicarpum muehlenberg	<i>ianum</i> t	olue maiden-cai	ne	G4	S 1		
Counties of occurrence: Andropogon arctatus	Ī	pine-woods blue	estem	G3	S 1		
Counties of occurrence: Andropogon perangustatus	l	Elliott's beardg	rass	G5T	4 S1		
Counties of occurrence: Andropogon virginicus var.	glaucus ł	peardgrass		G4T4	T5 S2		
Counties of occurrence: Aristida mohrii	l	Mohr's three-av		G1	S 1		
Counties of occurrence: Aristida simpliciflora	S	southern three-a	wned grass	s G3G	4 S1		
Counties of occurrence: Aristida spiciformis	I	gton, Dale, Escar pine barren thre		ass G4	S 1		
Counties of occurrence: Calamovilfa arcuata Counties of occurrence:	(Cumberland sar	ndgrass	G2G	3 S1	UR	
countres of occurrence.	Divont						

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
Chasmanthium nitidum Counties of occurrence:	shiny spikegras Houston, Mobile	S	G30	4 S1		
<i>Coelorachis tessellata</i> Counties of occurrence:	Lattion jointgra Baldwin, Butler, Covington, Esc		G5 eva, Mobile	S1		
<i>Coelorachis tuberculosa</i> Counties of occurrence:	Florida jointgra Covington, Geneva, Houston	ISS	G3	S1		
<i>Diarrhena americana</i> Counties of occurrence:	American beak Jackson, Madison	grain	G40	85 S2		
<i>Elymus churchii</i> Counties of occurrence:	Church's wildr Madison	ye	G20	3 S1		
<i>Eustachys floridana</i> Counties of occurrence:	two-spike finge Geneva	er grass	G2*	? S1		
Luziola bahiensis	Brazilian luziol	a	G40	65 S1		
Counties of occurrence:	Baldwin					
<i>Melica nitens</i> Counties of occurrence:	three-flower me Lawrence	elic grass	G5	S1		
<i>Muhlenbergia sobolifera</i> Counties of occurrence:	cliff muhly Franklin, Jackson, Lauderdale, M	/ladison	G5	S1		
Panicum lithophilum Counties of occurrence:	Swallen's panio DeKalb, Lee	c-grass	G2G	3Q S1		
<i>Panicum nudicaule</i> Counties of occurrence:	naked-stemmed Baldwin, Covington, Escambia,			Q S2		
Schizachyrium maritimum Counties of occurrence:	Gulf bluestem Mobile		G3G4	4Q S1		
Schizachyrium scoparium ssp. Counties of occurrence:	-	lestem	G57	S SH		
Sporobolus curtissii Counties of occurrence:	pineland dropse Covington	eed	G3	S1		
Sporobolus floridanus Counties of occurrence:	Florida dropsee Houston	ed	G3	S1		
Sporobolus teretifolius Counties of occurrence:	wire-leaved dro Houston	opseed	G2	S1	UR	2
<i>Tridens carolinianus</i> Counties of occurrence:	Carolina fluff g Conecuh, Covington, Escambia ⁴		G30	54 S1		
ORDER ERIOCAULALES Family Eriocaulaceae - Pip	ewort Family					
Eriocaulon aquaticum	seven-angled p	-	G5			
<i>Eriocaulon lineare</i> Counties of occurrence:	narrow pipewor Covington, Houston	rt	G4	S2		
<i>Eriocaulon texense</i> Counties of occurrence:	Texas pipewort Baldwin, Escambia, Mobile, Wa		G4	S2		
<i>Lachnocaulon digynum</i> Counties of occurrence:	pineland bogbu Baldwin, Covington, Escambia,		G3	S2		

Scientific Name	Common N	ame	Global Rank	State Rank	Federal Status	State Status	SWAP Status
Lachnocaulon engleri Counties of occurrence:	Baldwin, Covi	Engler's bogbut	ton	G3	S1		
Lachnocaulon minus Counties of occurrence:	Covington, Ho	Small's bog-but ouston, Mobile	ton	G3G	4 S1?		
ORDER HYDROCHARITA Family Hydrocharitaceae -		amily					
<i>Elodea canadensis</i> Counties of occurrence:	Limestone, M	broad waterwee arshall	ed	G5	S1		
ORDER JUNCALES	•1						
Family Juncaceae - Rush F Juncus georgianus Counties of occurrence:		Georgia rush e, Randolph, Talla	poosa	G4	S 1		
<i>Juncus gymnocarpus</i> Counties of occurrence:	Covington, Da	naked-fruited ru ile, Geneva, Mobil		G4	S2		
Juncus interior var. interior Counties of occurrence:		inland rush		G4T4	Q S1		
Juncus nodatus Counties of occurrenc		stout rush vington, Crensha Iontgomery, Mo			kson, Laud	erdale, La	wrence,
ORDER LILIALES Family Iridaceae - Iris Fam Nemastylis geminiflora Counties of occurrence:	-	prairie pleatleaf ns, Sumter	2	G4	S1		
Family Liliaceae - Lily Fam Erythronium albidum Counties of occurrence:	-	white trout lily		G5	S1S2	2	
<i>Erythronium umbilicat</i> <i>monostolum</i> Counties of occurrence:	Ĩ	dimpled trout li	ly	G5T	'3 S1		
<i>Lilium canadense</i> Counties of occurrence:	Etowah, Jacks	Canada lily on, Lawrence, Ma	dison, Morg	G5 gan, St. Clair	S2		
<i>Lilium iridollae</i> Counties of occurrence:	Baldwin, Covi	panhandle lily ington, Escambia,	Geneva	G2	S1		
<i>Lilium michiganense</i> Counties of occurrence:	Colbert, Deka	Michigan lily lb, Franklin, Lawr	ence, Lown	G5 des, Madison,		ielby	
<i>Lilium superbum</i> Counties of occurrence:		Turk's-cap lily ock, Butler, Chilto on, Madison, Mar			enshaw, Eso		
Prosartes maculata Counties of occurrence:	Jackson	spotted mandar	in	G3G	4 S1		
Family Melanthiaceae - Bu Stenanthium leimanthoides Counties of occurrence:		Pine Barren De		G40	Q S1		
<i>Trillium flexipes</i> Counties of occurrence:	Etowah, Jacks	nodding trilliun on, Lawrence, Ma		G5 gan, Winston	S2S3	3	

Scientific Name	Common Na	ame	Global Rank	State Rank	Federal Status	State Status	SWAP Status
<i>Trillium grandiflorum</i> Counties of occurrence:		large-flowered	trillium	G5	S1		
<i>Trillium lancifolium</i> Counties of occurrence:	Calhoun, Cher Shelby, Tuscal			G3 n, Jackson, M			Perry,
<i>Trillium pusillum</i> var. 1 Counties of occurrence:	·	Alabama least t		G3T2	2Q S2		
<i>Trillium recurvatum</i> Counties of occurrence:	Franklin, Lawı	prairie trillium rence, Morgan, Pio	ckens	G5	S2		
<i>Trillium reliquum</i> Counties of occurrence:	Bullock, Henry	relict trillium y, Lee		G3	S2	LE	2
<i>Trillium rugelii</i> Counties of occurrence:	Calhoun, Clay	southern noddin , Coosa, Lee, Shel	0		S2?		
<i>Trillium sessile</i> Counties of occurrence:	Blount, Cullma	toadshade an, Jackson, Lime	stone, Mars	G4C hall	35 S2		
<i>Trillium sulcatum</i> Counties of occurrence:	DeKalb, Jacks	southern red tri on, Marshall	llium	G4	S1		
<i>Trillium vaseyi</i> Counties of occurrence:	Lee	Vasey's trillium	l	G4	S1?		
<i>Veratrum hybridum</i> Counties of occurrence:	Autauga ⁴ , Bibl	broadleaf buncl b, Coosa, Lee ⁴	nflower	G5	S 1		
<i>Veratrum parviflorum</i> Counties of occurrence:	Blount, Cherol	small-flowered fakee ⁴ , Cleburne, De		-	? \$1\$2	2	
<i>Veratrum woodii</i> Counties of occurrence:	Bibb, Dale, Ge	wood's false he eneva, Henry	llebore	G5	S 1		
Xerophyllum asphodeloides Counties of occurrence:		turkeybeard		G4	S1		
ORDER NAJADALES Family Najadaceae - Naiad Najas gracillima Counties of occurrence: C	-	thread-like naia	d	G5	? S1		
ORDER ORCHIDALES Family Orchidaceae - Orch	id Family						
Aplectrum hyemale Counties of occurrence:	· ·	puttyroot vah, Lawrence		G5	S2		
Calopogon barbatus Counties of occurrence:	Escambia, Mo	bearded grass-p bile	vink	G4	? S1		
Calopogon multiflorus Counties of occurrence:	Baldwin, Mob	many-flowered ile	grass-pink	G20	3 S1		
Calopogon oklahomensis Counties of occurrence:	Baldwin	Oklahoma gras	s-pink	G3	S1		
<i>Corallorhiza wisteriana</i> Counties of occurrence:	Bibb, Choctaw	spring coralroo , Houston, Jackso		G5 Tuscaloosa	S2		

⁴ Historic occurrence.

			<u> </u>		<u><u> </u></u>	CIVAD
Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
Cypripedium candidum	small white la Colbert, Dallas, Lowndes		G4			
<i>Cypripedium kentuckiense</i> Counties of occurrence:	southern lady' Clarke, Coosa, Hale, Lowndes,		G3 apoosa, Wasł			
	green-fly orch Baldwin, Barbour, Butler, Coff Houston, Mobile		G4 Covington, I			a, Henry,
Habenaria quinqueseta var. qu Counties of occurrence: Isotria verticillata Counties of occurrence:	-	pogonia	G4G5' G5 Jackson, Ma	S2		
<i>Liparis liliifolia</i> Counties of occurrence: <i>Liparis loeselii</i> Counties of occurrence:	lily-leaved twa Colbert, Jackson Loesel's twayb	ayblade	G5 G5	S 1		
Orthochilus ecristatus Counties of occurrence:	crestless eulop Baldwin, Mobile	hia	G2	S1		
Platanthera blephariglottis va Counties of occurrence:		nged orchid	G4G5T	^{3T4} S1S	2	
<i>Platanthera integra</i> Counties of occurrence:	yellow fringel Baldwin, Conecuh, Escambia, I		G30	64 S2		
Platanthera lacera	white fringelea Calhoun, Clay, Cleburne, DeKa green-fringed Autauga, Cleburne, Geneva, Li	alb, Jackson, orchid	G5	aloosa, Wir	iston	
Platanthera nivea Counties of occurrence:	snowy orchis Conecuh, Covington, Escambia	, Geneva, Ho	G5 ouston, Mobil			
Platanthera peramoena Counties of occurrence:	purple fringele Clay, Lauderdale, Madison ⁴	ess orchid	G5	S1		
Spiranthes brevilabris	Texas ladies'-	tresses	G10	SI SH	-	
Spiranthes longilabris Counties of occurrence:	giant spiral lac Mobile	lies'-tresses	G3	S1		
Spiranthes lucida Counties of occurrence:	shining ladies ³ Bibb	-tresses	G5	S1		
ORDER ZINGIBERALES Family Cannaceae - Canna Canna flaccida Counties of occurrence:	Family bandana-of-th Baldwin, Geneva, Houston, Mo		s G4'	? \$1		
Family Marantaceae - Arro <i>Thalia dealbata</i> Counties of occurrence:	powdery thalia	ì	G4	S1		

⁴ Historic occurrence.

Scientific Name	Common N	ame	Global Rank	State Rank	Federal Status	State Status	SWAP Status
Class Dicotyledoneae	– Dicots						
ORDER APIALES Family Apiaceae - Carrot H							
Harperella nodosa Counties of occurrence: Lilaeopsis carolinensis		Carolina lilaeop		G2 G3C		LE	
Counties of occurrence: <i>Ptilimnium costatum</i> Counties of occurrence:		eastern bishop-	weed	G4	S1		
Sium floridanum Counties of occurrence:		Florida water-p	arsnip	G10	Q S1		
Family Araliaceae - Aralia Aralia racemosa Counties of occurrence:	-	American spike	enard	G4C	5 S1		
ORDER ARISTOLOCHIIA Family Aristolochiaceae - H Hexastylis shuttleworthii va Counties of occurrence:	Birthwort Fan r. <i>harperi</i>	Harper's wild g	÷	G41	°3 S2		
Hexastylis speciosa Counties of occurrence:	Autauga Chilte	Harper's heartle on, Elmore	eaf ⁷	G2	S2	UR	
ORDER ASTERALES Family Asteraceae - Aster I Ampelaster carolinianus Counties of occurrence:	-	Carolina aster		G5	S1		
Arnica acaulis Counties of occurrence:	Houston	Leopardsbane		G4	SH		
Arnoglossum diversifolium Counties of occurrence:	Houston	variable-leaved I	ndian-planta	in G2	S1	UR	
Arnoglossum sulcatum Counties of occurrence:	Baldwin, Cone	Indian-plantain ecuh, Covington, I		G3 bia, Geneva,		te	
Balduina atropurpurea Counties of occurrence:	Geneva ⁴	purple balduina		G2	SH	UR	
Bidens cernua Counties of occurrence:	Blount, Conecu	nodding beggar h, Etowah, Shelby		G5	S1		
Bigelowia nuttallii Counties of occurrence:	Blount, Cherol	Nuttall's rayless kee, DeKalb, Etow					
<i>Brickellia cordifolia</i> Counties of occurrence:	Bullock, Coffe Macon, Pike, I			G2C shaw, Dale, C		ry, Houston	, Lee,
<i>Chrysopsis godfreyi</i> Counties of occurrence:	Baldwin	Godfrey's golde	en-aster	G2	S1		
Chrysopsis gossypina ssp. c	ruiseana	Cruise's golden	-aster	G5T	SH		
<i>Cirsium lecontei</i> Counties of occurrence:	Baldwin, Mob	Le Conte's this ile	tle	G20	3 S1		

Scientific Name	Common Na	ame	Global Rank	State Rank	Federal Status	State Status	SWAP Status
<i>Cirsium muticum</i> Counties of occurrence:	Butler, Cheroke	swamp thistle ee, Cleburne, Cren	shaw, Pike	G5	S1		
<i>Cirssium nuttallii</i> Counties of occurrence:	Mobile	Nuttall's thistle		G5	S 1		
<i>Coreopsis grandiflora</i> var. Counties of occurrence:		Ketona tickseed	7	G5T	2 S2		
<i>Coreopsis nudata</i> Counties of occurrence:	Baldwin, Gene	Georgia tickseed va, Houston, Mob		G3?	S1		
<i>Coreopsis pulchra</i> Counties of occurrence:	Cherokee, Dek	Woodland ticks Kalb, Etowah, Jack		G2	S 2		
<i>Echinacea pallida</i> Counties of occurrence:	Calhoun, Chan	pale-purple cono nbers, Greene, Lee		G4	S 2		
<i>Echinacea simulata</i> Counties of occurrence:	Cherokee	wavy-leaf purpl	e coneflov	ver G3	S 1		
<i>Erigeron strigosus</i> var. <i>dolo</i> Counties of occurrence:		Cahaba daisy flo	eabane ⁷	G5T2	2? S2?		
<i>Eurybia chapmanii</i> Counties of occurrence:	Geneva, Houst	Chapman aster on, Mobile		G2G	3 SH		
<i>Eurybia eryngiifolia</i> Counties of occurrence:	Covington, Ge	coyote-thistle as neva	ter	G3G	4 S1		
<i>Eurybia spectabilis</i> Counties of occurrence:	Covington, De	showy aster Kalb		G5	S2		
<i>Eurybia surculosus</i> Counties of occurrence:	Jackson	creeping aster		G4G	5 S1		
<i>Helenium brevifolium</i> Counties of occurrence:	Baldwin, Escar	little leaf sneeze mbia, Geneva	weed	G4	S 1		
Helenium vernale Counties of occurrence:	Baldwin, Escar	spring sneezewe mbia, Geneva	ed	G 4?	S2		
Helianthus eggertii Counties of occurrence:	Bibb, Blount, I	Eggert's sunflo Butler, Calhoun, D		G3 hklin, Madisor	s2		
Helianthus glaucophyllus Counties of occurrence:	Coosa, Jacksor	white-leaved su	nflower	G3G	4 SH		
Helianthus longifolius Counties of occurrence:	Cherokee, Dek	longleaf sunflov Kalb, Jackson	ver	G3	S1S2	2	
Helianthus porteri Counties of occurrence:	Chambers, Lee	confederate dais , Randolph	У	G4	S 2		
Helianthus smithii Counties of occurrence:	Bibb, Blount, C Talladega	Smith's sunflow Calhoun, Cherokee		G2Q burne, Jackso		urion ⁴ , Ran	dolph ⁴ ,
Helianthus verticillatus Counties of occurrence:	Cherokee	whorled sunflow	ver	G1	S1	LE	2
<i>Iva microcephala</i> Counties of occurrence:	Baldwin, Barb	small-headed m our, Conecuh, Hou		G5 le	S 1		

						C · · ·	0111
Scientific Name	Common Na	ame	Global Rank	State Rank	Federal Status	State Status	SWAP Status
Jamesianthus alabamensis Counties of occurrence:	Bibb, Blount,	jamesianthus Calhoun, Cleburne	, Colbert, F	G3 Franklin, Jeffe		les, Shelby,	Winston
<i>Liatris chapmanii</i> Counties of occurrence:	Baldwin, Esca	Chapman's gay- mbia ⁴	feather	G5	S1		
<i>Liatris cylindracea</i> Counties of occurrence:	Bibb	slender blazing-	star	G5	S2		
<i>Liatris oligocephala</i> Counties of occurrence:	Bibb	Cahaba torch ⁷		G1	S1		
Lygodesmia aphylla Counties of occurrence:	Houston	Rose rush		G4G	5 S1		
Marshallia mohrii Counties of occurrence:	Bibb, Blount,	Mohr's Barbara' Calhoun, Cherokee		G3 , Etowah, Wa		LT	
Mikania cordifolia Counties of occurrence:	Baldwin, Clarl	Florida Keys hem ke, Geneva, Housto	•	G5 Monroe	S2		
Phoebanthus tenuifolius Counties of occurrence:	Escambia	pineland false s	unflower	G3	SH		
Pityopsis oligantha Counties of occurrence:	Covington, Es	Coastal-Plain go cambia, Geneva	olden-aster	r G2G	4 S2		
Pityopsis pinifolia Counties of occurrence:	Autauga	golden aster		G4	S1		
<i>Polymnia laevigata</i> Counties of occurrence:	Bibb, Jackson,	Tennessee leafc Madison, Tuscalo		G3	S2S	3	
Prenanthes barbata Counties of occurrence:	Cherokee, Cla	barbed rattlesna rke, Dallas, Etowa		G3	S1S	2	
Pterocaulon virgatum Counties of occurrence:	Escambia	barbed rattlesna	ke-root	G5	S1		
<i>Rudbeckia auriculata</i> Counties of occurrence:	Barbour, Blou	Wand blackroot nt, Covington, Cre		G2 neva, Jeffersor	S2 n, Pike, She	UR lby, St. Clai	
<i>Rudbeckia heliopsidis</i> Counties of occurrence:	Cherokee, Del	sun-facing cone Kalb, Lee, Macon,		G2	S2	UR	
<i>Rudbeckia mollis</i> Counties of occurrence:	Henry, Housto	soft-hair coneflo	ower	G3G	5 S1		
<i>Rudbeckia nitida</i> Counties of occurrence:	Conecuh	shiny coneflowe	er	G3	S1		
<i>Rudbeckia triloba</i> var. <i>pinn</i> Counties of occurrence:		pinnate-lobed bla , Dallas, Lowndes,	•		3 S2S	3	
Silphium brachiatum Counties of occurrence:	Blount, Jackso	Cumberland ros		n G2G	53 S2		
Silphium glutinosum Counties of occurrence:	Bibb	sticky rosinwee	d ⁷	G2	S2		
Silphium mohrii Counties of occurrence:	Cherokee, Jacl	Mohr's rosinwee kson, Marshall	ed	G3?	Q S1		

⁴ Historic occurrence.
⁷ Alabama endemic.

				a		a	GILLAR
Scientific Name	Common Na	ame	Global Rank	State Rank	Federal Status	State Status	SWAP Status
Silphium perplexum Counties of occurrence:	•	Old Cahaba ros		G1			
Silphium pinnatifidum Counties of occurrence:		prairie-dock rt, DeKalb, Etowa	h, Franklin	G30 , Lawrence, N	•		
<i>Solidago arenicola</i> Counties of occurrence:	Blount	southern racem	ose golden	urod G2C	53 S1	UR	
<i>Solidago buckleyi</i> Counties of occurrence:	St. Clair	Buckley's golde	enrod	G4	S1		
<i>Symphyotrichum ericoides</i> Counties of occurrence:	Sumter	heath aster		G5	5 S1		
Symphyotrichum georgianu Counties of occurrence: Symphyotrichum kralii Counties of occurrence:	Bibb, Blount,	Georgia aster Clay, Etowah ⁴ , Sho pale-violet aster		G3 lair ⁴ , Talladeg GN	ga ⁴ , Tuscalo	osa ⁴	
Symphyotrichum oolentangiense var. Counties of occurrence:	-	sky blue aster		G57	C5 S1		
Symphyotrichum pratense		barrens silky as	ter	G4	? S1		
Counties of occurrence:	Etowah, Russe	ll, Sumter					
Symphyotrichum sericeum		western silvery	aster	G5	5 S1		
Counties of occurrence:	Colbert						
Symphyotrichum simmonds	ii	Simmonds' aste	er	G40	35 S1		
Counties of occurrence:	Mobile						
<i>Thelesperma filifolium</i> Counties of occurrence:	Sumter	stiff greenthread	t	G4C	65 S1		
<i>Verbesina walteri</i> Counties of occurrence:	Sumter, Wilco	Carolina Crowr x	beard	G4	S1		
ORDER CAMPANULALES Family Campanulaceae - B Lobelia boykinii Counties of occurrence:	ellflower Fan	Boykin's lobelia	ì	G20	63 S1	UR	
ORDER CAPPARALES Family Brassicaceae - Must Arabis georgiana		Georgia rockcre	266	G1	S1	LT	
Counties of occurrence:	Bibb, Dallas, I					LI	
Arabis patens Counties of occurrence:	Marengo, Pick	spreading rockc	eress	G3	S S1		
Armoracia lacustris Counties of occurrence	e: Colbert, Gre	lake cress ene, Lawrence, Lii	mestone	G4	? S1		
Draba ramosissima Counties of occurrence:	Marshall	branched Whitl	ow-grass	G4	S1		
Leavenworthia alabamica Counties of occurrence:	Franklin, Law	Alabama glade- rence	cress ⁷	G2	s2 S2		

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
Leavenworthia crassa Counties of occurrence:	fleshy-fruit glac Lawrence, Morgan	le cress ⁷	G2	S2	LE	
<i>Leavenworthia exigua</i> var. Counties of occurrence:	<i>lutea</i> pasture glade-cr Bibb, Jefferson, Marshall, St. Cla		G4T	1 S1		
Leavenworthia torulosa	necklace glade	cress	G4	SX		
<i>Leavenworthia uniflora</i> Counties of occurrence:	Michaux leaver Bibb, Lawrence, Madison, Morg		G4	S2		
<i>Lesquerella densipila</i> Counties of occurrence:	duck river blade Lawrence, Limestone, Morgan	derpod	G3	S1		
Paysonia lyrata Counties of occurrence:	lyrate bladderpo Colbert, Franklin, Lawrence	od^7	G1	S1	LT	
<i>Warea sessilifolia</i> Counties of occurrence:	sessile-leaved v Coffee, Dale, Henry, Houston, M		G2G	4 S1		
Family Capparaceae - Cape Polanisia tenuifolia Counties of occurrence:	slenderleaf clan	nmy-weed	G5	S 1		
ORDER CARYOPHYLLAI Family Caryophyllaceae - P Paronychia argyrocoma Counties of occurrence:	ink Family Silvery nailwor	t	G4	S 1		
Paronychia herniarioides Counties of occurrence:	coastal plain nai Autauga, Dallas	lwort	G20	4 S1		
Paronychia rugelii Counties of occurrence:	Rugel's nailwor Geneva	rt	G2*	? S1		
Paronychia virginica Counties of occurrence:	yellow nailwort Bibb	-	G4	S2		
Silene caroliniana ssp. when Counties of occurrence:	rryi Wherry's catchf Autauga, Bibb, Blount, Calhoun, St. Clair, Shelby	2	G5T2 Chilton, DeK	~		Marshall,
Silene ovata Counties of occurrence:	ovate catchfly Dallas, Etowah, Geneva, Henry,	Madison, N	G3 Iarengo, Mar		ir	
Silene regia Counties of occurrence:	royal catchfly Bibb, Monroe, Wilcox		G3G	4 S2?		
<i>Silene rotundifolia</i> Counties of occurrence:	roundleaf catch Jackson, Lawrence, Winston	fly	G4	S1S2	2	
Stellaria corei	chickweed		G4	S 1		
<i>Stellaria fontinalis</i> Counties of occurrence:	water stitchwor Lawrence	t	G3	S 1	UR	
Family Nyctaginaceae - Fou Mirabilis albida Counties of occurrence:	r-o'clock Family pale umbrella-v Bibb, Dallas, Franklin, Greene, S		G5	S2		

⁴ Historic occurrence.
⁷ Alabama endemic.

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
Family Portulacaceae - Pur Claytonia caroliniana Counties of occurrence:	Carolina spri	ng beauty	G5	S1		
Phemeranthus calcaricum Counties of occurrence:	limestone far	ne-flower	G3	S2		
Phemeranthus parviflorum Counties of occurrence:	small-flowere Coosa	ed fame-flow	er G5	S1		
Phemeranthus teretifolium	quill fame-flo	ower	G4	S1		
ORDER CELASTRALES Family Aquifoliaceae - Holl Ilex amelanchier Counties of occurrence:	ly Family serviceberry Baldwin, Houston, Mobile, W	•	G4	S2		
Family Celastraceae - Bitte Celastrus scandens Counties of occurrence:	climbing bitte	ersweet	G5	S1		
ORDER DIPSACALES Family Adoxaceae - Mosch Viburnum ashei Counties of occurrence:	Ashe's arrow	wood		S 1		
Viburnum bracteatum Counties of occurrence:	limerock arro Calhoun, Etowah ⁴ , Jackson, M		G10	62 S1		
Viburnum obovatum Counties of occurrence:	small-leaf vit Geneva, Houston	ournum	G5	S1		
Viburnum rafinesquianum Counties of occurrence:	downy arrow Limestone	wood	G5	S1		
Family Caprifoliaceae - Ho Diervilla rivularis Counties of occurrence:	mountain bus	sh-honeysuck	de G3	S2		
<i>Triosteum angustifolium</i> Counties of occurrence:	yellowleaf tin Calhoun, Colbert, Dallas, Etov		G5 Jackson, Jeff		an	
Family Valerianaceae - Val Valeriana pauciflora Counties of occurrence:	valerian		G4	S1		
ORDER EBENALES Family Sapotaceae - Sapote Sideroxylon reclinatum Counties of occurrence:	buckthorn		G4C	5 S1?		
<i>Sideroxylon thornei</i> Counties of occurrence:	swamp buckt Baldwin, Clarke, Geneva, Hou		G2	S1	UF	R
ORDER ERICALES Family Clethraceae - Peppe Clethra acuminata Counties of occurrence:	mountain per	pper-bush	G4	S1		

Scientific Name	Common Na	ame	Global Rank	State Rank	Federal Status	State Status	SWAP Status
Family Emission Upath Fa	mily						
Family Ericaceae - Heath Fa Kalmia hirsuta Counties of occurrence: Ba	-	hairy laurel		G5	S2		
Pieris phillyreifolia Counties of occurrence:	Covington, Ge	climbing fetter- neva, Houston, M		G3	S2		
Rhododendron austrinum Counties of occurrence:	Baldwin, Butle Mobile, Monro		h, Covingto	G3 on, Crenchaw			eva,
Rhododendron colemanii Counties of occurrence:	Barbour, Butle	Red Hills azale r, Clarke, Conecu		G? Pike, Russell			
Rhododendron cumberlande. Counties of occurrence:		Cumberland aza , Jackson	alea	G4	? S2		
Rhododendron minus Counties of occurrence:	Barbour, Coos	Carolina rhodoo a, Henry, Jackson		G4	S2		
Rhododendron prunifolium Counties of occurrence:	Barbour, Henr	plumleaf azalea y, Lee, Russell	L	G3	S2S3	3	
Family Monotropaceae - Ind Monotropsis odorata var. od Counties of occurrence:	orata	sweet pinesap		G31	S? S1		
ORDER EUPHORBIALES Family Buxaceae - Boxwood Pachysandra procumbens Counties of occurrences	-	Allegheny-spur k, Colbert, Frankli		G4C Lawrence, Lo			
Family Euphorbiaceae - Spu Croton alabamensis var. ala Counties of occurrence:	bamensis	Alabama crotor	1 ⁷	G31	r3 S3		
Croton elliottii Counties of occurrence:	Barbour, Escar	Elliott's croton mbia, Geneva, Hor	uston	G20	53 S1	UF	R
Euphorbia discoidalis Counties of occurrence:	Baldwin	euphorbia		G3?	Q S2?		
Euphorbia inundata		Florida pine spu	ırge	G40	5 S1		
Counties of occurrence: I	Baldwin ⁴						
Phyllanthopsis phyllanthoid Counties of occurrence:		maidenbush		G4	S2S3	3	
Stillingia aquatica Counties of occurrence:	Baldwin, Hous	water toothleaf		G40	5 S1		
ORDER FABALES							
Family Fabaceae - Pea Fami Amorpha nitens Counties of occurrence: H	-	indigo bush		G3	? S1?		
Apios priceana Counties of occurrence:	Autauga, Dalla	Price's potato-b as, Jackson, Lawre		G2 on, Marshall,		L7 lcox	[
Astragalus canadensis Counties of occurrence:	-	Canadian milky		G5			
⁴ Historic occurrence.	-						

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
Astragalus obcordatus Counties of occurrence:	Florida milkvo Dallas	etch	G3G	4 S1		
Astragalus tennesseensis Counties of occurrence:	Tennessee mil Lawrence, Morgan	kvetch	G3	S1S	2	
Astragalus villosus Counties of occurrence:	hoary milkvet Baldwin ⁴ , Butler, Coffee, Cone		G4 cambia ⁴ , Mot			
Baptisia australis var. aber Counties of occurrence:		go	G5T	2	S1	
<i>Baptisia megacarpa</i> Counties of occurrence:	Apalachicola Autauga, Bibb, Bullock, Crens Pike, Tallapoosa		G2 Henry, Lee, 1			
<i>Chamaecrista deeringiana</i> Counties of occurrence:	Florida senna Covington, Escambia, Geneva,	Houston	G2G4	4Q S1		
Dalea cahaba Counties of occurrence:	Cahaba prairie Bibb	e clover ⁷	G2	S2		
Dalea foliosa Counties of occurrence:	leafy prairie c Franklin, Lawrence, Jefferson,		G2G	3 S1	LE	2
Dalea gattingeri Counties of occurrence:	Gattinger's pra Cherokee, Franklin, Lawrence,		G3G	4 S3		
<i>Desmodium ochroleucum</i> Counties of occurrence:	cream tick-tre Autauga, Clarke, Dallas, Green Wilcox		G2G ndes, Madiso			ry, Sumter,
<i>Galactia floridana</i> Counties of occurrence:	Florida milk p Mobile	ea	G3G	4 S1		
<i>Lathyrus venosus</i> Counties of occurrence:	smooth veiny Bibb, Cherokee, Chilton, Clay,		G5	S 1		
Orbexilum lupinellum Counties of occurrence:	lupine scurfpe Autauga ⁴ , Pike	a	G3G	4 S1		
<i>Orbexilum simplex</i> Counties of occurrence:	single-stemme Mobile, Washington	ed scurf-pea	G4G	5 S1		
<i>Pediomelum subacaule</i> Counties of occurrence:	Nashville brea Colbert, Franklin, Lawrence	ıdroot	G4	S2		
<i>Tephrosia mohrii</i> Counties of occurrence:	pineland hoar Covington, Houston	y-pea	G3	S 11	?	
<i>Thermopsis mollis</i> Counties of occurrence:	soft-haired the Jackson, Marshall	ermopsis	G3G	4 S1		
ORDER FAGALES Family Fagaceae - Beech Fa	amily					
Castanea pumila var. ozark		apin	G5T	3 SH		
<i>Quercus arkansana</i> Counties of occurrence:	Arkansas oak Autauga, Bibb, Chilton, Hale, I	Henry, Perry,	G3 Pike, Sumter			
<i>Quercus boyntonii</i> Counties of occurrence:	Boynton's san Blount, Etowah, St. Clair	d post oak	G1	S1		

⁴ Historic occurrence.
⁷ Alabama endemic.

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
<i>Quercus georgiana</i> Counties of occurrence:	Georgia oak Chambers, Jefferson, St. Clair		G3	S2		
<i>Quercus macrocarpa</i> Counties of occurrence:	bur oak Montgomery, Pickens, Sumter		G5	S2		
<i>Quercus minima</i> Counties of occurrence:	dwarf live oak Baldwin, Geneva		G5	S2		
<i>Quercus oglethorpensis</i> Counties of occurrence:	Oglethorpe's oa Marengo, Sumter, Wilcox	ık	G3	S 1		
<i>Quercus similis</i> Counties of occurrence:	bottomland-pos Mobile	st oak	G4	S 1		
ORDER GENTIANALES						
Family Apocynaceae - Dogl Amsonia rigida Counties of occurrence:	stiff blue-star		G4	S 1		
Family Asclepiadaceae - Mi Asclepias cinerea Counties of occurrence:	Carolina milkw	veed	G4?	S1		
Asclepias exaltata Counties of occurrence:	poke milkweed Etowah, Jackson, Winston		G5	S 1		
Asclepias rubra Counties of occurrence:	red milkweed Autauga. Covington, Escambia		G4G	5 S1		
Asclepias tomentosa Counties of occurrence:	velvet milkwee Covington, Geneva	d	G4	SH		
Asclepias viridula Counties of occurrence:	southern milkw Houston	veed	G2	S1		
<i>Matelea alabamensis</i> Counties of occurrence:	Alabama angle Henry	pod	G2	S 1		
<i>Matelea baldwyniana</i> Counties of occurrence:	Baldwin's milk Barbour, Clarke, Monroe, Tallap		G3 ox	S 1		
Family Gentianaceae - Gen Sabatia brevifolia Counties of occurrence:	short-leaved pi	nk	G3G	4 S1		
Sabatia capitata Counties of occurrence:	rose gentian Calhoun, Chilton, Clay, Cleburn	e, DeKalb,	G2 St. Clair	S2		
Sabatia grandiflora	large-flowered	pink	G3G	4 S 1?		
Sabatia quadrangula Counties of occurrence:		k	G4G	5 SH		
Family Loganiaceae - Loga <i>Mitreola angustifolia</i>	narrow-leaf mit	terwort	G4G	5 S1		
Counties of occurrence: Spigelia alabamensis Counties of occurrence:	Alabama pinkr	pot ⁷	G1	S 1		
Spigelia gentianoides Counties of occurrence:	gentian pinkroo	ot	G1	S 1	LF	E
⁴ Historic occurrence.	_					

⁴ Historic occurrence.
⁷ Alabama endemic.

Scientific Name	Common Na	ma	Global Rank	State Rank	Federal Status	State Status	SWAP Status
Scientific Ivallie		me	Kalik	Kalik	Status	Status	Status
ORDER GERANIALES Family Oxalidaceae - Oxali Oxalis grandis Counties of occurrence:		giant wood-sorr on,	rel	G4C	35 S1		
ORDER HALORAGALES Family Haloragaceae - Wat Myriophyllum laxum Counties of occurrence:		loose water-mil		G3 ashington	8 82		
ORDER HAMAMELIDALI Family Hamamelidaceae - V Fothergilla gardenii Counties of occurrence:	Witch-hazel Fa	dwarf witch-ald	er	G3C	54 S1		
<i>Fothergilla major</i> Counties of occurrence:		mountain witch ee, Cullman, Dek		G3 lin, Jackson, N		Clair	
Hamamelis ovalis Counties of occurrence		Mississippi wite gton, Monroe, W		G1	S1		
ORDER ILLICIALES Family Schisandraceae - St Schisandra glabra Counties of occurrence:	· · ·	bay starvine		G3	8 S2		
ORDER JUGLANDALES Family Juglandaceae - Wal Juglans cinerea Counties of occurrence:		butternut n, Lawrence, Ma	dison, Wins	G4 ston	S1		
ORDER LAMIALES Family Boraginaceae - Bora Onosmodium decipiens Counties of occurrence:		Alabama marbl	eseed ⁷	G2	2 S2		
Onosmodium molle ssp. mo Counties of occurrence:		soft false gromv ence, Wilcox	well	G4G5	ST3 S2		
Onosmodium molle ssp. sub Counties of occurrence:		false gromwell		G4G5	5T4 S1		
Family Lamiaceae - Mint F Agastache nepetoides Counties of occurrence:	-	yellow giant hy nce, Madison, Ma		G5	5 S1		
<i>Blephilia subnuda</i> Counties of occurrence:		smooth blephili on	a	G10	52 S1S	2	
<i>Clinopodium glabellum</i> Counties of occurrence:		Ozark savory		G30	Q S1		
<i>Dicerandra fumella</i> Counties of occurrence:		large-flowered p Conecuh, Covin				ton	
Hedeoma drummondii Counties of occurrence:		Drummond's pe es, Marengo, Sun		G5	5 S2		

⁴ Historic occurrence.
⁷ Alabama endemic.

Alabama Natural Heritage Program® – 2019 Tracking List

Scientific Name	Common Na	ame	Global Rank	State Rank	Federal Status	State Status	SWAP Status
<i>Monarda clinopodia</i> Counties of occurrence:	Etowah, Jacks	basil bee-balm on, Jefferson, Lau	derdale, Ma	G5 dison, Shelby			
<i>Physostegia leptophylla</i> Counties of occurrence:	Baldwin	slenderleaf false	e dragonhe	ad G4	? SH		
<i>Pycnanthemum curvipes</i> Counties of occurrence:	Calhoun, Char	a mountain-mir nbers, Lee, Rando		G3	S 1?		
<i>Pycnanthemum nudum</i> Counties of occurrence:	Covington, Ge	Coastal Plain m meva	ountain mi	int G5	S1		
Pycnanthemum virginianum Counties of occurrence:		Virginia mount	ain mint	G5	S1		
Scutellaria alabamensis Counties of occurrence: Tuscaloosa	Bibb, Calhoun	Alabama skullc , Coosa, Cullman,		G2 fferson, Lawı		, St. Clair,	
Scutellaria glabriuscula Counties of occurrence:	Covington, Ge	glabrous skullca neva	ap	G2'	? S1		
<i>Stachys alabamica</i> Counties of occurrence:	Clay	Alabama hedge	-nettle	G1	S 1		
Stachys nelsonii Counties of occurrence:	Talladega	Nelson's hedge-	nettle	G1	S 1		
Synandra hispidula Counties of occurrence:	Jackson	Guyandotte bea	uty	G4	S1		
ORDER LAURALES							
Family Lauraceae - Laurel <i>Lindera melissifolia</i> Counties of occurrence:	-	pondberry ilcox ⁴		G20	3 S1	LE	
<i>Lindera subcoriacea</i> Counties of occurrence:	Baldwin, Clarl	bog spicebush ke, Escambia, Mol	oile	G20	33 S1	UR	
ORDER LINALES							
Family Linaceae - Flax Fan Linum macrocarpum	nily	flax		G2	S1		
Counties of occurrence:	Baldwin, Esca		shington	02	51		
<i>Linum sulcatum</i> var. <i>harper</i> Counties of occurrence:		Harper's groove ert, Dallas, Frankl	~			go, Sumter	
ORDER MAGNOLIALES							
Family Magnoliaceae - Mag Magnolia fraseri	gnolia Family	Fraser's magnol	ia	G5	S1		
ORDER MALVALES							
Family Malvaceae - Mallow Callirhoe alcaeoides Counties of occurrence:	-	clustered poppy	r-mallow	G5'	? S2		
<i>Callirhoe papaver</i> Counties of occurrence:	Washington	woods poppy-n	nallow	G5	S 1		
<i>Callirhoe triangulata</i> Counties of occurrence:	Autauga ⁴ , Elm	clustered poppy ore, Sumter	r-mallow	G3'	? S1		
 ⁴ Historic occurrence. ⁷ Alabama endemic. 	_						

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
		Kalik	Nalik	Status	Status	Status
<i>Hibiscus coccineus</i> Counties of occurrence:	brilliant hibiscu Mobile, Wilcox	IS	G4	·? S1		
Kosteletzkya smilacifolia Counties of occurrence:	southern seasho Mobile	ore mallow	G1G	3Q S1	?	
ORDER MYRTALES Family Melastomataceae - 2 <i>Rhexia aristosa</i> Counties of occurrence:	awned meadow	beauty	G30	G4 S1		
<i>Rhexia parviflora</i> Counties of occurrence:	small-flowered n Covington, Escambia, Geneva	neadowbeau	ty G2	2 S1	UR	
Rhexia salicifolia Counties of occurrence:	panhandle mea Covington, Houston	dowbeauty	Gž	2 S1	UR	
Family Onagraceae - Eveni	ng Primrose Family					
Epilobium coloratum	purple-leaf will	ow-herb	G	5 S1		
<i>Ludwigia arcuata</i> Counties of occurrence:	pond seedbox Mobile		G40	G5 S1		
<i>Ludwigia spathulata</i> Counties of occurrence:	spathulate seed Covington, Geneva, Houston, M		Gź	2 S1S	2 UR	
<i>Oenothera heterophylla</i> Counties of occurrence:	vari-leaf evenir Dallas, Greene, Pickens, Sumter	01	e Ga	4 S2		
ORDER NEPENTHALES Family Droseraceae - Sund Drosera rotundifolia Counties of occurrence:	round-leaved su	indew	G	5 S1		
Family Sarraceniaceae - Pi	tcher-plant Family					
Sarracenia leucophylla	whitetop pitche Baldwin, Conecuh, Covington, H		Gã eneva, Mobi			
Sarracenia oreophila Counties of occurrence:	green pitcher-p Cherokee, DeKalb, Elmore ⁴ , Etc		G2 n, Marshall	2 S2	LE	
Sarracenia rubra ssp. alaba Counties of occurrence:	amensis Alabama canebrak Autauga, Chilton, Elmore	e pitcher-plan	t ⁷ G4T	IT2 S1S	2 LE	
Sarracenia rubra ssp. wher Counties of occurrence:	<i>ryi</i> Wherry's sweet Baldwin, Covington, Escambia,				UR	
ORDER NYMPHAEALES Family Nymphaeaceae - W Nuphar lutea ssp. ulvacea Counties of occurrence:	west Florida co	wlily	G57	Г2 S1	UR	
ORDER PAPAVERALES Family Fumariaceae Dicentra cucullaria Counties of occurrence:	Dutchman's bre Calhoun, Colbert, Etowah, Jacks		G: ale, Lawren			

⁴ Historic occurrence.
⁷ Alabama endemic.

Scientific Name	Common N	ame	Global Rank	State Rank	Federal Status	State Status	SWAP Status
Family Papaveraceae - Pop <i>Stylophorum diphyllum</i> Counties of occurrence:		celandine popp on, Madison	y	G	5 S1		
ORDER PLANTAGINALES Family Plantaginaceae - Pla Chelone obliqua var. oblique Counties of occurrence:	a <mark>ntain Fam</mark> ily a	red turtlehead		G4T3	T4Q SI		
Chelone lyonii Counties of occurrence:	DeKalb, Jacks	pink turtlehead		G4	S1		
<i>Collinsia verna</i> Counties of occurrence:	Colbert	blue-eyed Mary		G	5 S1		
<i>Gratiola pusilla</i> Counties of occurrence:	Chambers, Ra	granite pool spr ndolph, Tallapoosa		G2	2 S1	LT	
Penstemon multiflorus Counties of occurrence:	Baldwin, Covi	many-flower be ngton, Escambia, 1	0	G4	S1		
Penstemon kralii Counties of occurrence:	Jackson, Madi	Kral's beardton	gue	G2	2 S1		
Penstemon smallii		Small's beardton	ngue	Gã	3 S1		
<i>Plantago cordata</i> Counties of occurrence:	Bibb, Butler, (heart-leaved pla Cherokee, Colbert,		G4 Wilcox	S2		
Veronicastrum virginicum Counties of occurrence:	Bibb, Coosa, I	Culver's root Dallas		G4	S1		
ORDER POLYGALALES Family Polygalaceae - Milk	wort Family	white millowest		C	1 01)	
Polygala balduinii Polygala crenata		white milkwort crenate milkwor		G4 G4		!	
Counties of occurrence:	Baldwin, Mob				. 51		
<i>Polygala hookeri</i> Counties of occurrence:	Baldwin, Covi	Hooker's milkw ngton, Escambia, (Gá	3 S1S	2	
<i>Polygala senega</i> var. <i>latifoli</i> Counties of occurrence:		Seneca snakero	ot	G4G	5T? S1		
ORDER POLYGONALES							
Family Polygonaceae - Buck Eriogonum longifolium var. Counties of occurrence:	harperi	Harper's umbre		G47	F2 S1		
Polygonella americana Counties of occurrence:	Blount, Chero	southern jointw kee, Cullman, Dek		G	5 S1		
Polygonella macrophylla Counties of occurrence:	Baldwin	large-leaved joi	ntweed	Gá	3 S1		
ORDER PRIMULALES Family Primulaceae - Primu Dodecatheon frenchii Counties of occurrence:	-	French's shootin	ng star	Gâ	3 S1		
Hottonia inflata Counties of occurrence:	Dallas, Greene	featherfoil , Jefferson, Macor	1, Madison.	G4 Montgomery			
Lysimachia fraseri		Fraser's loosest		G	-		

Seientifie Nome	Common N		Global	State	Federal	State	SWAP Status
Scientific Name	Common Na	ame	Rank	Rank	Status	Status	Status
Counties of occurrence:	Calhoun, St. C	lair					
Lysimachia graminea		grass-leaf loose	strife	G10	Q S1		
Counties of occurrence: Lysimachia lewisii Counties of occurrence:		Lewis's yellow	loosestrife	G2	S1		
ORDER RANUNCULALES Family Berberidaceae - Ba		7					
Berberis canadensis	i berry ranniy	American barbe	erry	G3	SH		
Counties of occurrence:	Jefferson ⁴ , Lee		5				
<i>Jeffersonia diphylla</i> Counties of occurrence:	Jackson, Madi	twinleaf son		G5	S2		
Family Ranunculaceae - Bu	ittercup Fami	ily					
Aconitum uncinatum		blue monkshoo	d	G4	- S1		
Actaea rubifolia Counties of occurrence:	Madison	Appalachian bu	gbane	G3	S1		
<i>Clematis morefieldii</i> Counties of occurrence:	Jackson, Madi	Morefield's leat	her-flower	G2	S2	LE	
Clematis socialis Counties of occurrence:	Cherokee, Eto	Alabama leathe wah, St. Clair	r-flower	G1	S1	LE	
<i>Delphinium alabamicum</i> Counties of occurrence:	Autauga, Blou Morgan ⁴	Alabama larksp nt, Butler, Dallas,		G3 fferson, Law		des, Monro	e,
Delphinium carolinianum ssp.	•	prairie larkspur		G5T2	T4 S1		
Enemion biternatum	cuciphilum	false rue-anemo	one	G512 G5			
Counties of occurrence:	Bibb, Colbert,	Conecuh, Jackson	, Madison, 7	Fuscaloosa, V	Winston		
<i>Hydrastis canadensis</i> Counties of occurrence:	Blount, Frankl	golden seal in, Jackson, Lawre	ence, Marsha	G3C all	54 S2		
Ranunculus flabellaris Counties of occurrence:	Greene, Limes	yellow water-cr tone, Madison, Su		G5	S1		
Ranunculus longirostris Counties of occurrence:	Morgan	eastern white w	ater crowfo	oot G5	S1		
<i>Thalictrum debile</i> Counties of occurrence:	Colbert, Green	southern meado le, Lawrence, Mad		G2 ns, Sumter, W		UR	
Thalictrum mirabile Counties of occurrence:	Colbert, Frank	Little Mountain lin, Lawrence, Wi		ie G30	Q S2		
ORDER RHAMNALES							
Family Rhamnaceae - Buck	kthorn Family	7					
<i>Ceanothus microphyllus</i> Counties of occurrence:	Bakdwin, Cov	Little-leaf buck ington, Escambia,		ouston	S2		
<i>Rhamnus lanceolata</i> Counties of occurrence:	Butler, Dallas,	lance-leaved bu Hale, Lowndes, P		G5 nter	S2		
Sageretia minutiflora Counties of occurrence:	Baldwin, Mob	tiny-leaved buc ile	kthorn	G4	S1		

⁴ Historic occurrence.
⁷ Alabama endemic.

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
Family Vitaceae - Grape Fa	amily					
Vitis mustangensis Counties of occurrence:	mustang	grape	G 4?	S1		
ORDER ROSALES						
Family Crassulaceae - Ston Sedum nevii Counties of occurrence:	Nevius' s Bibb, Fayette, Greene, Ha	•	G3 adega, Tuscalo	S3 oosa, Walker		
Family Grossulariaceae - G	ooseberry Family					
<i>Ribes curvatum</i> Counties of occurrence:	granite go DeKalb, Jackson, Marsha	•	G4	S2		
<i>Ribes cynosbati</i> Counties of occurrence:	prickly g Cherokee, DeKalb, Jacks	•	G5 shall	S1S2		
Family Rosaceae - Rose Fa	•					
<i>Agrimonia incisa</i> Counties of occurrence:	incised g Baldwin, Bullock, Coving		G3 oile, Pike, Was	S2 hington		
Crataeus aemula	Rome hav	wthorn	G2G	3 S1		
Crataegus ashei Counties of occurrence:	Ash's hav Autauga, Dallas, Lownde		G1	S 1		
Crataegus triflora Counties of occurrence:	three-flov Autauga, Clarke, Colbert,	vered hawthorn Crenshaw, Dallas	G2G s, Franklin, Ma		omery, Su	mter
<i>Geum vernum</i> Counties of occurrence:	spring av Lawrence, Morgan	ens	G5	S1		
<i>Geum virginianum</i> Counties of occurrence:	pale aven Jackson, Madison	S	G5	S2		
Neviusia alabamensis		snow-wreath	G2	S2		
Counties of occurrence: <i>Rubus allegheniensis</i> Counties of occurrence:	Ū.	fferson, Limestone y blackberry	e, Madison, St. G5	Clair, Tusca S1	aloosa	
Spiraea tomentosa Counties of occurrence:	hardhack Jackson		G5	S 1		
Waldsteinia lobata Counties of occurrence:		barren strawber	ту G2G	3 S1	UR	2
Family Saxifragaceae - Sax	ifrage Family					
<i>Boykinia aconitifolia</i> Counties of occurrence:	brook sax	tifrage	G4	S1		
Chrysosplenium americanu Counties of occurrence:		n golden-saxifrag	ge G5	SH		
Heuchera longiflora Counties of occurrence:		ver alumroot	G4	S1		
Lepuropetalon spathulatum Counties of occurrence:	southern Butler, Choctaw, Conecul	lepuropetalon h Crenshaw, Lee ⁴ ,	G4G Marengo, Mo		re, Sumter	
<i>Mitella diphylla</i> Counties of occurrence:	miterwor Jackson, Morgan	t	G5	S1		

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
Scientific Name	Common mame	Kalik	Kallk	Status	Status	Status
Parnassia asarifolia Counties of occurrence:	kidneyleaf gras Clay, Cleburne, Jackson, Lee	ss-of-parna	ssus G4	S2		
<i>Parnassia grandifolia</i> Counties of occurrence:	large-leaved gra Bibb, Choctaw ⁴ , Washington ⁴	ss-of-parnas	ssus G3	8 S1		
ORDER RUBIALES Family Rubiaceae - Madde <i>Galium lanceolatum</i>	r Family Torrey's wild h	icorice	GS	5 S1		
ORDER SALICALES Family Salicaceae - Willow Salix floridana Counties of occurrence:	Family Florida willow Butler, Covington, Houston		G2	2 S1	UR	2
ORDER SANTALALES						
Family Santalaceae - Sanda	•		~			
<i>Comandra umbellata</i> Counties of occurrence:	bastard toad-fla Colbert, Jackson	ax	G	5 S1		
<i>Nestronia umbellula</i> Counties of occurrence:	nestronia Bibb, Cherokee, Clarke, DeKall	o, Hale, Low	G4 vndes, Marsha		nston	
<i>Pyrularia pubera</i> Counties of occurrence:	buffalo-nut Cherokee, Cleburne, DeKalb, T	allapoosa	G	5 S2		
ORDER SAPINDALES						
Family Anacardiaceae - Ca Cotinus obovatus Counties of occurrence:	shew Family American smo DeKalb, Jackson, Madison, Mo		G4	S2		
Family Rutaceae - Rue Fan	nilv					
Zanthoxylum americanum	northern prickl Bibb, Lowndes, Montgomery, T	•	GS	5 S1		
ORDER SCROPHULARIA	LES					
Family Acanthaceae - Acan	•					
<i>Dyschoriste oblongifolia</i> Counties of occurrence:	oblong-leaved Barbour, Henry, Houston	dyschoriste	e G40	35 S1		
Ruellia noctiflora Counties of occurrence:	night-flowering Baldwin, Covington, Escambia,		inia G2	2 S1		
Family Lentibulariaceae - I	Bladderwort Family					
<i>Pinguicula planifolia</i> Counties of occurrence:	Chapman's but Baldwin, Covington, Mobile	terwort	G3	? \$1\$2	2	
Pinguicula pumila	small butterwo	rt	G4	S1?	,	
<i>Utricularia floridana</i> Counties of occurrence:	Florida bladder Covington, Houston, Mobile	rwort	G30	35 S1S	2	
<i>Utricularia inflata</i> Counties of occurrence:	swollen bladde Autauga, Baldwin, Chilton	rwort	GS	5 S1S2	2	
<i>Utricularia olivacea</i> Counties of occurrence:	dwarf bladderv Baldwin	vort	G4	S1		

Scientific Name	Common N	ame	Global Rank	State Rank	Federal Status	State Status	SWAP Status
<i>Utricularia resupinata</i> Counties of occurrence:	Covington	northeastern bla	adderwort	G4	S1S2	2	
Family Orobanchaceae - Bu Agalinis aphylla Counties of occurrence:	_	leafless false-fo	oxglove	G30	64 S2		
Agalinis auriculata Counties of occurrence:	Montgomery ⁴ ,	auriculate false Morgan ⁴ , Pickens	0	G3	S1		
Agalinis divaricata Counties of occurrence:	Covington, Ge	pineland false-f	foxglove	G3'	? S1		
Agalinis filicaulis Counties of occurrence:	Mobile	thin-stemmed f	alse-foxglo	ve G3C	64 S2		
Agalinis gattingeri		Gattinger's false	e-foxglove	G4	SH		
<i>Agalinis georgiana</i> Counties of occurrence:	Covington, Ge	Georgia false-fe	oxglove	GN	R S1		
<i>Agalinis heterophylla</i> Counties of occurrence:	Bullock, Dalla	prairie false-fox s, Elmore, Hale, N		G4C ontgomery, P			
<i>Agalinis linifolia</i> Counties of occurrence:	Baldwin, Covi	flax-leaf false-f ington, Houston, N	•	G4	? S2		
<i>Agalinis oligophylla</i> Counties of occurrence:	Dallas, Sumter	ridge-stem false	e-foxglove	G4	S1		
Aureolaria patula Counties of occurrence:	Cherokee	spreading false-	foxglove	G3	S1		
<i>Castilleja coccinea</i> Counties of occurrence:	DeKalb, Jacks	scarlet Indian p on, Madison, Mar		G5	S1		
<i>Castilleja kraliana</i> Counties of occurrence:	Bibb	Cahaba paintbr	ush ⁷	G2	S2		
<i>Macranthera flammea</i> Counties of occurrence:	Conecuh, Cov	flame flower ington, Crenshaw,	Escambia, (G3 Geneva, Mob	~ =		
<i>Orobanche uniflora</i> Counties of occurrence:	Bibb, Blount,	one-flowered b Bullock, Cherokee	-	G5 DeKalb, Etov		, Marshall	
Schwalbea americana Counties of occurrence:	Baldwin, Bulle	chaffseed ock, Geneva ⁴ , Mol	bile ⁴	G20	33 S1	LE	
ORDER SOLANALES							
Family Convolvulaceae - M Evolvulus sericeus var. seric Counties of occurrence:	ceus	Family creeping morni	ng-glory	G5T3	T5 S1		
<i>Stylisma aquatica</i> Counties of occurrence:	Covington, Da	water southern allas, Escambia, G			S2		
<i>Stylisma pickeringii</i> var. <i>pic</i> Counties of occurrence:		Pickering's mor as, Wilcox	ming-glory	G4T	°3 S1		

⁴ Historic occurrence.
⁷ Alabama endemic.

Alabama Natural Heritage Program® – 2019 Tracking List

Scientific Name	Common N	ame	Global Rank	State Rank	Federal Status	State Status	SWAP Status
Family Cuscutaceae - Dodd	ler Family						
<i>Cuscuta harperi</i> Counties of occurrence:		Harper's dodder erokee, DeKalb, E		G2C Iklin, Jacksor		Marion, Ma	arshall,
Family Hydrophyllaceae - W Hydrophyllum appendicular Counties of occurrence:	tum	mily appendage wate	erleaf	G5	5 S2?		
<i>Phacelia dubia</i> var. <i>georgia</i> Counties of occurrence:		outcrop small-f			S2 S2		
Phacelia strictiflora var. ro. Counties of occurrence:		prairie scorpion	-weed	G51	54 S1		
Family Polemoniaceae - Ph Phlox pulchra Counties of occurrence:	-	Wherry's phlox , Butler, Elmore, I		G1 ike, Shelby, '			
Family Solanaceae - Nights Lycium carolinianum Counties of occurrence:	_	Christmas berry	7	G4	S1S	2	
Calliphysalis carpenteri Counties of occurrence:	Autauga, Mon	carpenter's grou roe, Wilcox	ind-cherry	G3	S S1		
Solanum carolinense var. h Counties of occurrence:	irsutum	horse-nettle		G5T1	S 1		
ORDER THEALES	falaata (T	· • · ·					
Family Hypericaceae - St. J Hypericum dolabriforme Counties of occurrence:		amily straggling St. Jo	ohn's-wort	G4	SH		
<i>Hypericum harperi</i> Counties of occurrence:	Henry, Housto	Harper's St. Joh	n's-wort	G3C	64 S1		
<i>Hypericum lloydii</i> Counties of occurrence:	Randolph	Lloyd St. John's	s-wort	G4	? S1		
Hypericum microsepalum Counties of occurrence:	Houston	Flatwoods St. J	ohn's-wort	G4	S1		
<i>Hypericum nitidum</i> Counties of occurrence:	Covington	Carolina St. Joh	n's-wort	G4	S2		
Hypericum nudiflorum Counties of occurrence:	Bibb, Butler, (pretty St. John's Choctaw, Clarke, C		G5 lenry, Lee, M		apoosa, Wi	lcox
<i>Hypericum reductum</i> Counties of occurrence:	Baldwin, Covi	Atlantic St. Joh		G5 obile, Washin			
Family Theaceae - Tea Fan Gordonia lasianthus Counties of occurrence:	-	loblolly bay ston, Mobile, Mon	roe	G5	5 S1		
Stewartia malacodendron		silky camellia		G4			
Counties of occurrence:		, Blount, Bullock, hall, Pike, Shelby	Butler, Chil	ton, Coosa, I	Jale, DeKall	o, Geneva, 1	Houston,

 ⁴ Historic occurrence.
 ⁷ Alabama endemic.

		Global	State	Federal	State	SWAP
Scientific Name	Common Name	Rank	Rank	Status	Status	Status
Stewartia ovata Counties of occurrence:	mountain camel Cullman, DeKalb, Franklin, Jack		G4 r, Lawrence, I		-	
ORDER Urticales Family Urticceae - Nettle Fa Pilea fontana Counties of occurrence:	springs clearwe	ed	G	5 S1		
ORDER VIOLALES Family Cistaceae - Rockros Helianthemum arenicola Counties of occurrence:	coastal-sand fro	ostweed	G	3 S1		
Family Violaceae - Violet Factoria Counties of occurrence:	amily Canada violet Autauga, Butler, DeKalb, Jackso	on, Lownde	G: s, Tuscaloosa			
<i>Viola egglestonii</i> Counties of occurrence:	Eggleston's viol Franklin, Lawrence	let	G4	4 S1		

Class Pinopsida – Conifers

ORDER PINALES			
Family Cupressaceae - Cypress Family Juniperus communis	ground juniper	G5	S1
Counties of occurrence: Calhoun	ground jumper	05	51
Family Pinaceae - Pine Family			
Pinus clausa	sand pine	G4	S2
Counties of occurrence: Baldwin			
Pinus serotina	pond pine	G5	S1
Counties of occurrence: Barbour, Butle	er, Covington, Geneva, Pike		

		Global	State	Federal	State	SWAP
Scientific Name	Common Name	Rank	Rank	Status	Status	Status

Non-vascular plants

MOSSES

Class Bryopsida – Mosses With Arthrodontous Peristome

ORDER ARCHIDIALES Family Archidiaceae Archidium tenerrimum	large-spored moss	G5?	S1?
ORDER BRYALES Family Bryaceae Brachymenium macrocarpon	tree moss	GNRQ	S 1?
ORDER DICRANALES Family Bryoxiphiaceae Bryoxiphium norvegicum Family Dicranaceae	sword moss	G5?	S1
Dichodontium pellucidum	a moss	G4G5	S 1
ORDER FISSIDENTALES Family Fissidentaceae Fissidens hyalinus	filmy fissidens	GNR	S1
Fissidens kegelianus	fan moss	GNRQ	S1?
Fissidens neonii	moss	G2?	S1?
ORDER GRIMMIALES Family Grimmiaceae Schistidium rivulare Counties of occurrence: Jackson	streamside schistidium moss	G4G5	S2?
ORDER LEUCODONTALES Family Fontinalaceae Fontinalis welchiana Counties of occurrence: DeKalb	difficult moss	GU	S1?
ORDER POTTIALES Family Calymperaceae Syrrhopodon prolifer	moss	G5	S1
Family Pottiaceae <i>Tortula rhizophylla</i> Counties of occurrence: Shelby	moss	G3G5	S1
<i>Trichostomum crispulum</i> Counties of occurrence: Morgan	moss	G4G5	S2

LIVERWORTS

Class Jungermanniopsida – Liverworts

ORDER JUNGERMANNIALES Family Jubulaceae

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Status	SWAP Status
Frullania riparia Counties of occurrence:	liverwort Jackson		G40	G5 S11	?	
Family Lejeuneaceae Cheilolejeunea evansii	liverwort		G10	G2 S1		
Cololejeunea ornata Counties of occurrence:	liverwort Jackson		G20	G4 S1		
Lejeunea blomquistii	liverwort		GN	R S1		
Lejeunea cardoti Counties of occurrence:	liverwort Lamar		Gá	3 S1		
Family Plagiochilaceae						
Homaliadelphus sharpii	liverwort		GN	R S1		
Myurella siberica	liverwort		GN	R S1		

EXTINCT SPECIES THAT ONCE OCCURRED IN ALABAMA

Class Aves – Birds

ORDER COLUMBIFORMES - Pigeons and Doves Family Columbidae - Doves and Pigeons Ectopistes migratorius passenger pigeon

ORDER PSITTACIFORMES - Parrots Family Psittacidae - Lorises, Parakeets, Macaws, and Parrots Conuropsis carolinensis Carolina parakeet

Class Actinopterygii - Ray-finned Fishes

ORDER CYPRINODONTIFORMES - Topminnows, Livebearers, and Allies

Family Fundulidae - Topminnows *Fundulus albolineatus*

whiteline topminnow⁷

ORDER CYPRINIFORMES - Carps, Minnows, and Suckers

Family Catostomidae - Suckers Moxostoma lacerum

harelip sucker

Class Bivalvia – Bivalves (Clams & Mussels)

ORDER UNIONOIDA - Freshwater Mussels Family Margaritiferidae

anny Margarimeridae	
Alasmidonta mccordi	Coosa elktoe ⁷
Elliptio nigella	winged spike
Epioblasma arcaeformis	sugarspoon
Epioblasma biemarginata	angled riffleshell
Epioblasma cincinnatiensis	Gulf riffleshell
Epioblasma flexuosa	leafshell
Epioblasma haysiana	acornshell
Epioblasma lenior	narrow catspaw
Epioblasma lewisii	forkshell
Epioblasma personata	round combshell
Epioblasma propinqua	Tennessee riffleshell
Epioblasma stewardsonii	Cumberland leafshell
Epioblasma torulosa torulosa	tubercled blossom
Epioblasma turgidula	turgid blossom
Fusconaia apalachicola	Apalachicola ebonyshell
Lampsilis binominata	lined pocketbook
Medionidus mcglameriae	Tombigbee moccasinshell ⁷
Obovaria haddletoni	Haddleton lampmussel ⁷
Pleurobema fibuloides	Kusha pigtoe
Pleurobema marshalli	flat pigtoe
Pleurobema verum	true pigtoe ⁷

⁷ Alabama endemic.

Alabama Natural Heritage Program® – 2019 Tracking List

Class Gastropoda - Gastropods (Snails & Slugs)

ORDER BASOMMATOPHORA	
Family Planorbidae - Rams-horn Snails	7
Amphigyra alabamensis	shoal sprite ⁷
Neoplanorbis carinatus	carinate flat-top snail ⁷
Neoplanorbis smithi	angled flat-top snail ⁷
Neoplanorbis tantillus	little flat-top snail ⁷
Neoplanorbis umbilicatus	umbilicate flat-top snail ⁷
ORDER NEOTAENIOGLOSSA	
Family Hydrobiidae - Pebblesnails	
Clappia umbilicata	umbilicate pebblesnail ⁷
Marstonia olivacea	olive marstonia ⁷
Family Pleuroceridae - Horn, River, and	
Elimia brevis	short-spire elimia ⁷
Elimia capillaris	spindle elimia
Elimia clausa	closed elimia ⁷
Elimia fusiformis	fusiform elimia ⁷
Elimia gibbera	shouldered elimia
Elimia hartmaniana	high-spired elimia ⁷
Elimia impressa	constricted elimia ⁷
Elimia jonesi	hearty elimia ⁷
Elimia laeta	ribbed elimia ⁷
Elimia macglameriana	Macglamery's Coosa river snail
Elimia pilsbryi	rough-lined elimia ⁷
Elimia pupaeformis	pupa elimia ⁷
Elimia pupoidea	bot elimia ⁷
Elimia pygmaea	pygmy elimia ⁷
Gyrotoma excisa	excised slitshell ⁷
Gyrotoma lewisii	striate slitshell ⁷
Gyrotoma pagoda	pagoda slitshell ⁷
Gyrotoma pumila	ribbed slitshell ⁷
Gyrotoma pyramidata	pyramid slitshell ⁷
Gyrotoma walkeri	round slitshell ⁷
Leptoxis clipeata	agate rocksnail ⁷
Leptoxis formosa	maiden rocksnail
Leptoxis ligata	rotund rocksnail ⁷
Leptoxis lirata	lirate rocksnail ⁷
Leptoxis minor	knob mudalia ⁷
Leptoxis occultata	bigmouth rocksnail ⁷
Leptoxis showalterii	Coosa rocksnail ⁷
Leptoxis torrefacta	squat rocksnail ⁷
Leptoxis vittata	striped rocksnail ⁷
Family Pomatiopsidae - Seep Snails	
Pomatiopsis hinkleyi	Dixie seep snail

⁷ Alabama endemic.

References

- American Ornithologists' Union. 1998. Check-list of North American Birds. 7th edition. American Ornithologists' Union, Washington, D.C. 829 pages.
- Best, T. L. and J. L. Dusi. 2014. Mammals of Alabama. University of Alabama Press, Tuscaloosa, Alabama. 496 pages.
- Boschung, H. T., and R. L. Mayden. 2004. Fishes of Alabama. Smithsonian Institution Press, Washington, D.C. 736 pages.
- Chesser, R. T., R. C. Banks, K. J. Burns, C. Cicero, J. L. Dunn, A. W. Kratter, I. J. Lovette, A. G, Navarro-Sigüenza, P. C. Rasmussen, J. V. Remsen, Jr., J. D. Rising, D. F. Stotz, and K. Winker. 2015. Fifty-sixth supplement to the American Ornithologists' Union Checklist of North American Birds. The Auk 132: 748-764.
- Crother, B. I. (editor). 2012. Scientific and standard English names of Amphibians and Reptiles of North America North of Mexico, with comments regarding confidence in our understanding. Seventh Edition. Society for the Study of Amphibians and Reptiles Herpetological Circular 39:1-92.
- Mettee, M. F., P. E. O'Neil, and J.M. Pierson. 1996. Fishes of Alabama and the Mobile Basin. Oxmoor House, Inc., Birmingham, Alabama. 820 pages.
- Mirarchi, R. E., editor. 2004. Alabama Wildlife. Volume 1. A checklist of vertebrates and selected invertebrates: aquatic mollusks, fishes, amphibians, reptiles, birds, and mammals. The University of Alabama Press, Tuscaloosa, Alabama. 209 pages.
- Ruane, S., R. W. Bryson Jr., R. A. Pyron, and F. T. Burbrink. 2014. Coalescent species delimitation in milksnakes (genus *Lampropeltis*) and impacts on phylogenetic comparative analyses. Systematic Biology 63:231-250.
- Williams, J. D., A. E. Bogan, and J. T. Garner. 2008. Freshwater mussels of Alabama and the Mobile Basin in Georgia, Mississippi, and Tennessee. University of Alabama Press, Tuscaloosa, Alabama. 960 pages.

APPENDIX C

Alabama's Best Management Practices for Forestry

PHOTOGRAPHS CONTRIBUTED BY:

Jeremy Lowery, Alabama Forestry Commission

Stephen Hudson, Auburn University, School of Forestry & Wildlife Sciences

Lacy Kendrick, Buchanan Forest Products, Selma, Alabama

GRAPHICS COURTESY OF:

South Carolina Forestry Commission

Tennessee Division of Forestry Turton, et al., 1992.

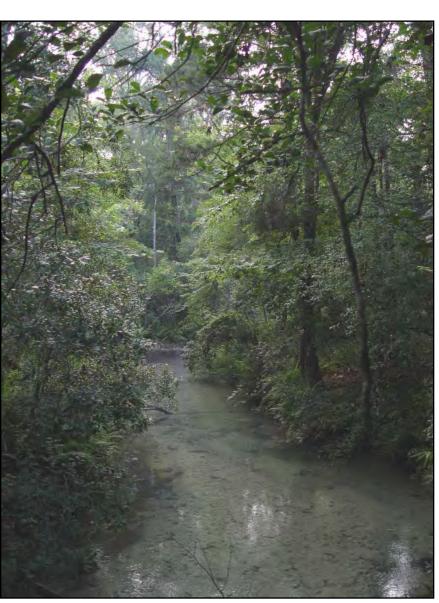
ACKNOWLEDGEMENTS

Funding for this project provided by the Forests Forever Foundation;
 the USDA Forest Service; Alabama Department of Conservation and
 Natural Resources, State Lands Division, Coastal Section, in part,
 by a grant from the National Oceanic and Atmospheric Administration,
 Office of Ocean and Coastal Resource Management, Award #06NOS4190235.

In accordance with federal law and Alabama Forestry Commission policy, this agency does not discriminate on the basis of race, color, national origin, sex, age, or disability. (Not all prohibited bases apply to all programs). To file a complaint of program discrimination write to:

Alabama Forestry Commission, Title VI Coordinator, PO Box 302550, Montgomery, AL 36130 or call (334) 240-9342. The Alabama Forestry Commission is an equal opportunity employer and provider.

TABLE OF CONTENTS


ForewordPage 1
Specifications for Individual BMPsPage 3
1. Streamside Management ZonesPage 4
2. Stream Crossings
3. Forest Roads
4. Timber Harvesting
5. Reforestation/Stand ManagementPage 15
6. Forested Wetland ManagementPage17
7. Revegetation/Stabilization
Appendices
1. Glossary
2. Additional Resources
3. Sources of Technical Assistance

Water Quality Management in Alabama

The Alabama Environmental Management Act authorizes the Alabama Department of Environmental Management (ADEM) to establish and enforce water quality standards, regulations

and penalties in order to carry out the provisions of state and federal water quality laws. From that authorization. ADEM Administrative Code prohibits the deposition of pollutants into or the degradation of the physical, chemical, or biological integrity of waters of the state (see glossary for definitions). With regard to silviculture, nonpoint source pollutants include, but are not limited to, sediment, organic materials, temperature, trash, pesticides and nutrients (see glossary for definitions and impacts) that are man induced.

In addition, the Alabama Water Pollution Control

The Alabama Forestry Commission's Role in Best Management Practices

The Alabama Forestry Commission was established and is mandated by Code of Alabama, 1975, Section 9-3-4 (1), to protect, conserve, and increase the timber and forest resources of the state. All citi-

> zens of Alabama are our valued customers. However, as the lead agency for forestry in the state, we seek to strike a balance between serving Alabama forest owners' needs and enhancing the benefits flowing to society from their forests. Our mission is to promote environmentally and economically sound forestry practices, and we are committed to optimizing available resources to achieve this mission.

> The Alabama Forestry Commission is not an environmental regulatory or enforcement agency, but it does accept the responsibility to maintain

Act states that ADEM shall have the authority to propose remedial measures necessary to clean up waters that have been determined to be polluted. ADEM advocates, however, that avoiding environmental problems through voluntary application of preventative techniques is much less expensive, more cost effective and practical than restoration after the fact. and update *Alabama's Best Management Practices* (*BMPs*) for Forestry whenever necessary to help Alabama's forestry community meet state water quality needs. The Commission will work in a cooperative manner with all state and federal agencies concerned, and is determined to utilize technical expertise from within and without the forestry community in any BMP revision process.

The Alabama Forestry Commission also accepts responsibility to provide education and technical assistance to landowners, loggers, foresters, vendors and the general public to ensure that good stewardship principles are understood and used.

Purpose of Best Management Practices

Alabama's Best Management Practices for Forestry are **non-regulatory guidelines** (except for the U.S. Army Corps of Engineer's baseline BMPs on pages 16 and 17 which are mandatory) suggested to help Alabama's forestry community maintain and protect the physical, chemical and biological integrity of waters of the state as required by the Federal Water Pollution Control Act, the Alabama Water Pollution Control Act, the Clean Water Act, the Water Quality Act, and the Coastal Zone Management Act.

The BMPs in this booklet lay out a framework of sound stewardship practices that, when consistently applied, will contribute positively to maintaining a high degree of water quality flowing from a forest. These BMPs are not intended to be all inclusive. Rational and objective on-site judgement must be applied to ensure that water quality standards are maintained.

The most important guidance that these BMPs can offer the forestry community is to **think and plan before you act**. Adequate forethought will pay off in two ways: to avoid unnecessary site disturbance or damage in the first place and to minimize the expense of stabilizing or restoring unavoidable disturbances when the operation is finished. The enclosed BMPs are directed only toward the maintenance of water quality.

However, these BMPs will have an indirect, positive impact on other forest resource values. Sound stewardship principles that enhance wildlife habitat, clean air, aesthetics and general environmental quality are compatible with water quality BMPs and the Alabama Forestry Commission encourages their use when applicable to the landowner's objectives.

Following sound stewardship principles in carrying out forestry practices will ensure that our forests continue to meet the needs of their owners, provide jobs, forest products, clean water and a healthy environment without costly regulations. Only through sound stewardship principles will all of these needs be met.

Responsibility

Responsibility for maintaining water quality standards during a forestry operation has been broadly interpreted to include all parties involved in the authorization, planning or implementation of the operation. The responsible parties may include professional forestry practitioner(s) such as forest resource managers, timber purchasers, loggers, vendors, forest engineers or others.

Due to this inherent responsibility it is in the best interest of all those involved in silvicultural operations to make every effort to prevent and correct violations of state and federal water quality laws, regulations and standards by consistently implementing BMPs.

SPECIFICATIONS FOR INDIVIDUAL BMPs

1. STREAMSIDE MANAGEMENT ZONES

A streamside management zone (SMZ) is a strip of land immediately adjacent to a water of the state where soils. organic matter and vegetation are managed to protect the physical, chemical and biological integrity of surface water adjacent to and downstream from forestry operations. Table 1 provides guidelines for protecting the critical area within a SMZ.

Landowners should have adequate streamside management zones marked before negotiating bids for timber sales.

water. Fell and skid trees directly away from waters of the state. According to Alabama Department of Environmental Management (ADEM) regulations, any tops or other logging debris dropped into the water or channel must be removed: however. organic debris in the water prior to harvest should not be removed from the stream. Stabilize wheel ruts if they could carry sedi-

Harvesting intimber sales.streamside manage-ment zones should be done so as to protect the for-

est floor and under story vegetation from damage. Do not remove (harvest) trees from banks, beds, or steep slopes if it will destabilize the soil and cause degradation of the water. Trees on the south and west banks provide the most critical shading of ment into waters of the state. Locate log decks and roads outside of SMZs (except at proper stream crossings and access points or unless steep topography/wetland conditions necessitate location within the SMZ).

Table 1: SMZ Minimum Standards ¹						
Purpose:	Protect banks, bed, and floodplains from erosion; control direct deposition of pollutants; provide shade, food, and cover for aquatic ecosystems; filter out pollutants from uplands.					
Management	Perennial Stream	ennial Stream Intermittent Stream				
Minimum width on each side of channel	In no cases should SMZs be less than 35 feet from a definable bank. ² A landowner's personal management objectives, on-site condition or stream sensitivity may require wider SMZs and more stringent control of forestry operations within the SMZ. For example, width should be extended to account for erodibility of soil, steepness of slopes and activities to be performed outside of the SMZ. ³ SMZs must always be wide enough to maintain water quality standards.					
Delineation	Outside boundaries should be well marked before operations begin.					
Roads	Follow state and federal BMPs (see Sections 2, 3, and 6) for roads and stream crossings.					
Harvesting Method	Partial cut only within minimum of 35 feet; partial cut or regeneration cut can take place beyond 35 feet.	Partial cut or regeneration cut when water quality degradation can be avoided.				
Minimum Residual Cover	50% Crown cover Vegetative⁴					
Reforestation	Natural regeneration, hand planting, direct seeding.					
Mechanical Site Preparation	No					
Herbicide	If herbicide is used, adhere strictly to label restrictions. Direct application is preferred over broadcast spraying.					
Fertilizer	No					

¹In cases where the stream channel is significantly braided, the forest should be managed under wetland BMP management recommendations (Section 6).

 $^{^{2}}$ If wildlife is a major objective, a minimum SMZ of 50 feet is recommended.

³USDA Natural Resources Conservation Service can provide information on soil erodibility.

⁴Permanent residual tree cover is not required along intermittent streams as long as other vegetation and organic debris are left to protect the forest floor during regeneration.

2. STREAM CROSSINGS

The crossing of streams by roads, skid trails, or firebreaks should be avoided. Stream crossings cause a break in the canopy and filtration strip provided by an SMZ. It may take a large amount of time and effort to stabilize water quality impairment from excessive stream crossings. If stream crossings are unavoidable, use the fewest number, cross the stream/SMZ by the least disruptive manner possible, and control sediment and other pollutants.

In general, stream crossings should be located where the bank and SMZ will be least disturbed. They should be installed at right angles to the stream where the stream channel is straight, and should have gentle slopes and straight paths in and out of the SMZ. Water diversions should divert upland runoff so that sediment and other pollutants can be filtered out on the forest floor before reaching the stream. At no time should a perennial or intermittent stream be crossed without providing a way for normal passage of water or aquatic animals within the channel. Follow mandatory federal BMPs listed on pages 19 and 20 when roads cross streams or any other wetlands.

Log crossings involve placing hollow or solid logs into shallow channels. Green and/or small diameter tops, limbs and brush should not be used for this purpose. The surface can be improved by use of secured decking or portable logging mats; do not use fill dirt. All log crossings must be removed when the logging operation is complete.

Fords can be used where the stream bed is firm, banks are low and stream is shallow. Banks should be back bladed away from water and used to improve the approaches. Rock may be brought in to stabilize the approaches and stream bottom.

Culverts, properly sized and installed, should be used to reduce road washouts and impoundments of water. Culvert sizes in Table II are best estimates for normal rainfall but may not handle the largest storm events. One large pipe is better than several smaller pipes. Culverts should be long enough to extend at least one foot beyond the fill on either end. Fill material upstream and down must be stabilized. Possible techniques include use of sand bags, concrete, rip-rap, hay bales, mulch, and vegetation. Culverts should be cleaned out regularly.

After an operation or phase of an operation has been completed or is going into a period of inactivity, all temporary crossings must be removed and the site stabilized; all permanent crossings must be stabilized and maintained.

Cleared stream crossing, stabilized with hay.

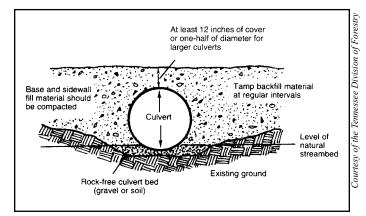
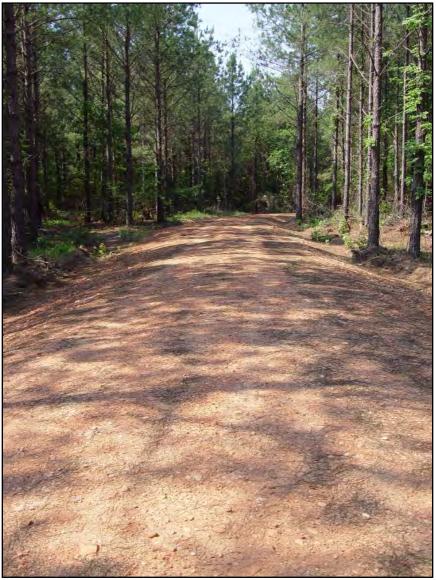

Proper culvert installation.

Table II Recommended Diameters for Culverts					
	Lower	Upper			
Area ((acres)	Coastal Plain	Coastal Plain	Piedmont	Mountains	
<u>. </u>	-				
10	12"	12"	12"	18"	
50	30"	18"	30"	36"	
100	48"	30"	42"	48"	
200	60"	42"	54"	two 48" pipes	

Culvert Installation

- Place culvert on stream bottom; do not dig below natural stream level to bury pipe.
- Culvert should have 2-3% pitch downstream for self-cleaning.
- Compact lower half of fill during installation.
- Earth cover over pipe should be a minimum of 12" or half the culvert's diameter, whichever is greater. Make fill over a culvert the high spot in the stream crossing.
- Provide for stream overflow away from culvert fill to prevent blowouts.

Proper installation prevents culverts from being crushed by heavy roads.


Bridges create the least disruption to stream flow. According to the Alabama Department of Environmental Management (ADEM) and Corps of Engineer regulations, banks and fill material must be stabilized and protected from erosion. Spans must be installed to permit passage of all expected high flow.

Portable bridges can be used in a way that protects water quality and reduces effort and expense in the long run.

3. FOREST ROADS

Crowned forest road.

Proper planning and location of roads will minimize the potential for deposition of pollutants into waters of the state, future maintenance and expense, and the amount of land taken out of production. Old roads should be reopened only if they are properly located and drainage devices will function properly. New roads must avoid streamside management zones (except at proper stream crossings and access points or unless steep topography/wetland conditions necessitate location within the SMZ), troublesome or sensitive moisture-laden soils, eroded gullies, etc. Road grades should also be minimized where soils are highly erodible and/or topography is steep. Dredge and fill

operations which may alter the flow, circulation or reach of waters of the state, especially wetlands, may require a permit from the Corps of Engineers.

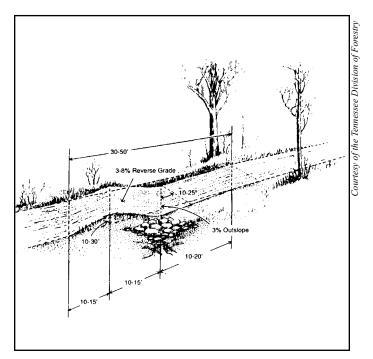
Adequate drainage is the most important factor in controlling soil erosion and keeping roads in a serviceable condition. Construction techniques such as crowned roads, turnout ditches, out-sloping and in-sloping should be used to provide some slope to flat roads which would hold water.

Crowned roads are designed to quickly drain road surfaces from the center of the road to side ditches. This technique helps to prevent water from soaking into the road and making it soft and muddy.

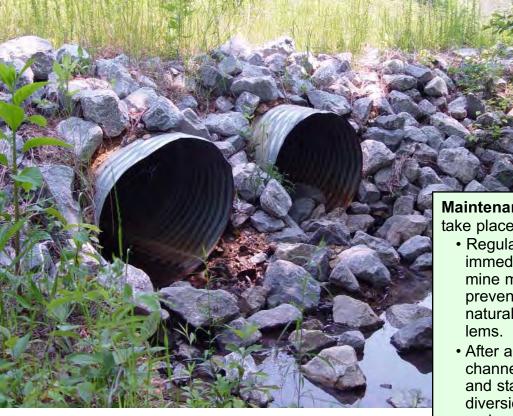
Turnout ditches should be installed at appropriate intervals to disperse water collected in roadside ditches away from the road base into surrounding vegetation.

Outsloped roads in hilly or mountainous terrain are graded at a 2-4% pitch to the downhill side of the road to drain off water as quickly as possible. Avoid berms of dirt along the outer edge of outsloped roads because they hold water in the road.

Insloped roads may be preferable when roads are built on side slopes with slippery soils and/or in steep terrain. Water collecting in the inside ditch, however, will have to be drained under the roads through culverts and be dispersed into vegetation on the outside of the road. **Construction of permanent roads** should take place with the following considerations:


- Use at least the minimum design standard consistent with anticipated traffic and reasonable safety.
- Merchantable timber should be cleared from the right of way before the arrival of grubbing equipment.
- Stumps, logs, slash and other organic debris should not be covered with fill material and incorporated into road beds.
- Minimize the amount of soil on the road banks or roadsides that is exposed to soil erosion. Balancing cuts and fills whenever practical is one means of minimizing soil exposure. Stabilize these areas as they are created to minimize any problems.
- Functional water diversion techniques or devices should be installed at the same time that roads are constructed. Drainage water should be dispersed onto the undisturbed forest floor whenever possible.

Excessive road steepness, on the other hand, may allow surface water to build up velocity and cause erosion. A variety of water diversion devices can be used to direct water from roads and ditches into vegetated areas upslope from streams in order to slow water down and filter out sediment.


Broad-based dips are an effective means of diverting water off a permanent road without interfering with truck or skidder traffic. They hold up well and remain effective under traffic as long as the outfall remains below the dip in the road grade. Gravel in the bottom of the dip may be necessary on some soils to hold up vehicles operating in wet conditions.

Broad-based dips are designed to move water off roads and facilitate the ease of vehicle use.

Water bars (and turnouts) installed at 30-45 degree angles are best used to stabilize temporary roads and skid trails that will no longer be used. Water bars may not hold up well or maintain their effectiveness when they are packed down or rutted by truck, skidder or four-wheeler traffic. A series of small water bars, well anchored into the hillside, can be constructed by a skidder or bulldozer.

Outfall protection should be provided to prevent erosion by absorbing the energy of water falling from the outlet end of water diversion devices. Use rocks, concrete, mulch, woody debris or dense vegetation. Outfalls must never be installed where runoff can be discharged or flushed directly into waters of the state.

Table III

Diversion devices can generally be installed using the following spacing guide. However, soil erodibility and natural drainage opportunities should also be considered for determining appropriate spacings. The USDA Natural Resources Conservation Service can provide information about the erodibility of soils.

 % Slope	Distance between water bars	Distance between broad-base dips and turnouts
3%	200'	235'
5%	135'	180'
10%	80'	140'
15%	60'	125'
20%	45'	
30%	35'	
40%	30'	

Maintenance of permanent roads should take place with the following considerations:

- Regular periodic inspection should start immediately after construction to determine maintenance requirements that prevent excessive erosion, impairment of natural drainage, or water quality problems.
- After an operation is completed, rutted or channeled roads should be reshaped and stabilized with functional water diversion devices to allow good drainage and control erosion.
- Seeding and mulching may be necessary to stabilize roadsides and closed temporary roads.
- Special soil stabilizing materials are available for particularly vulnerable areas (see USDA Natural Resources Conservation Service for dealers).

Control non-essential traffic during wet weather on roads which have a high potential for erosion; particularly immediately following construction.

A single large water bar constructed by a bulldozer can be used to close temporary roads to any further two-wheel drive traffic.

4. TIMBER HARVESTING

Harvesting activities should be conducted to ensure long-term maintenance of water quality. The following suggestions will help timber harvesters achieve this objective.

Temporary access roads (logging roads) and landing locations should be planned before operations begin to minimize soil disturbance. Road construction should be kept to a minimum, consistent with reasonable skidding distance. Spring heads, natural drainages and gullies should be avoided. Landings should also be kept as small

as possible, consistent with safe and efficient operation. Logging roads and landings must be located on firm ground, outside of Streamside Management Zones and above the ordinary high water mark of streams.

Landings must be located to prevent the adverse impact of skidding on water quality. Locating logging decks uphill and skidding up to them results in a cone-shaped pattern of skid trails which disperses water running downhill. If the logging deck is on the lower slope, the V-shaped pattern of skid trails could concentrate runoff and erode the logging deck areas. If the trees must be skidded downhill, erosion can be minimized by using several, smaller logging decks with fewer, smaller skid trails leading to any one.

When operations are completed, landings and temporary roads should be stabilized with water diversion devices and/or vegetation where there is a possibility of significant erosion and/or water quality degradation.

Felling should be done carefully to minimize the impact of subsequent phases of logging operations on water quality. Timber cut in Streamside Management Zones should be harvested in accordance with recommended guidelines on pages 4 and 5.

Skidding should be done to avoid disrupting natural drainages, prevent excessive soil displacement, and minimize impacts of rutting, compaction, and puddling on water quality and soil stability.

Stream channels and natural drainages must not be used as skid trails. They should be crossed following guidelines in Section 2.

Where slopes are steep but short in duration, trees can be felled uphill and winched to the skidder. Skid trails on steep slopes should have occasional breaks in grade and upon completion of use, must be water barred. Erosion in skid trails can sometimes be reduced by covering them with logging slash. Logging slash can also be scattered over temporary landings to help stabilize them.

When wet and/or soft ground conditions cannot be avoided, it is better to concentrate soil compaction from skidder traffic on a few trails that can be stabilized rather than disperse the effects over many trails.

Cut-to-length harvesting systems offer state-ofthe-art equipment and best available technology to maximize timber production and protect water quality and other forest resources at the same time.

Primary benefits of this system are from forwarders (or prehaulers) which can haul wood off the ground for long distances and need only minimum skid trails or landings. Less soil is displaced, rutted, and compacted. The on-board loader can be used to place logs for stream crossings and easily remove them when the crossing is no longer needed. In addition to high initial costs, however, this equipment is also limited by very steep terrain.

Trash disposal must be properly handled throughout the operation in accordance with all applicable laws. Fuel, lubricants and other toxic chemicals must never be drained into the soil. Food and drink containers, discarded equipment parts, and used fluids must be properly removed and disposed of. Trash must not be burned or buried on site.

5. REFORESTATION / STAND MANAGEMENT

Bedding on a contour.

Mechanical site preparation treatments must be used in such a manner as to minimize displacement of forest litter and topsoil, soil compaction and ero-

sion, stream sedimentation and the deposition of debris into waters of the state. The degree of mechanical site preparation should be limited to the amount that is needed to get a well stocked stand of desirable trees. In general, mechanical site preparation should be excluded from soils with slopes exceeding 25%. No mechanical site preparation should be used in SMZs.

Drum chopping is one of the most desirable methods of mechanical site preparation for the protection of soil and water quality. When chopping is done on steep slopes it should always be done up and down hill so that sediment can be trapped in the slits created by the chopper blades.

Bedding on slopes exceeding 2% should follow the contour.

On slopes 2% or less, beds should follow the natural drainage of the land. *Ripping and/or sub-soiling* should be done on the contour.

Disking should be done on the contour and restricted to areas with slopes 10% or less.

Shearing requires that the operator keep the blade out of the soil to minimize soil disturbance. Avoid overraking the area. The retention of small limbs, twigs, bark and rock on the ground surface helps reduce soil erosion.

Windrows should be laid out on the contour of the land 100 to 300 feet apart depending upon the slope of the land and erodibility of the soil. Topsoil should not be pushed into windrows. Debris may not be piled into any water of the state.

Straight blade bulldozing is the least desirable method of mechanical site preparation.

Windrows.

Chemical site preparation, with or without the use of fire, can duplicate or surpass mechanical site preparation results with less water quality impact.

Herbicide applications must follow the manufacturer's label instructions, EPA guidelines and Alabama State Law. Herbicides should not be aerially or broadcast applied in SMZs. Under no circumstances should herbicides be applied directly onto or allowed to drift or wash into surface waters unless labeled for such applications. Do not mix or clean equipment or herbicide containers in or near streams or water bodies. Frequent inspection of equipment is recommended.

Prescribed burning should be designed and managed to minimize adverse environmental effects. Avoid

intense spray and burns on steep slopes and highly erodible soils if water quality would be impacted.

Constructed firebreaks can be tied into existing natural barriers to minimize the need for fresh soil disturbances. Firebreaks should be stabilized with water diversion devices to minimize erosion and conveyance of sediment laden runoff into waters of the state. Vegetating firebreaks can further reduce erosion and the movement of sediment and other pollutants into waters of the state.

Wildfires demand that the primary objective of firebreak construction is to bring the fire under control.

Tree planting with a furrow type machine should be done on the contour.

Planting on a contour.

16

6. FORESTED WETLAND MANAGEMENT

Wetlands are those areas that are inundated or saturated by surface or groundwater at a frequency or duration sufficient to support (and under normal circumstances do support) a prevalence of vegetation typically adapted for life in saturated soil conditions.

The U.S. Army Corps of Engineers, using the *Federal Manual for Delineating Jurisdictional Wetlands*, determines under which conditions hydrophytic vegetation, hydric soils, and wetland hydrology must be present on the same site, under normal circumstances, for an area to be classified as a wetland. Jurisdictional wetlands may be found in the following

- Coves and lower slopes
- Branch bottoms
- Creek bottoms
- River bottoms

- Muck swamps
- Peat swamps and cypress/gum ponds
- Wet flats

Section 404 of the Clean Water Act usually requires that a permit be obtained from the Corps of Engineers before a discharge of dredged or fill materials can be made into waters of the United States (U.S.), including wetlands. A regulated discharge occurs when fill or dredged material is deposited into wetlands.

Exemptions for forestry activities from having to obtain an individual Section 404 permit from the Corps of Engineers may apply if the activities meet the following conditions:

1. It is not part of an activity whose purpose is to convert a wetland into an upland, where the flow or circulation of the waters of the U.S. may be impaired or the reach of water reduced; and

- 2. It is part of an established (i.e. ongoing) silvicultural, farming or ranching operation and not a new use to which the wetland was not previously subject; and
- 3. It uses "normal" silvicultural, farming or ranching activities which are in compliance with federal BMPs (listed under "Roads and Stream Crossings . . ." on, pages 19 and 20); and
- 4. It has not lain idle for so long that hydrological modifications will be necessary to resume operations; and
- 5. It does not contain any toxic pollutant listed under Section 307 of the Clean Water Act.

What is an established silvicultural operation? Established or ongoing operations are included in a management system (not necessarily written) which is planned over conventional rotation cycles for a property or are introduced as part of an ongoing operation.

Evidence of use of the property may be used to determine whether an operation is ongoing. Such evidence includes the following:

1) a history of harvesting with either natural or artificial regeneration; 2) a history of fire, insect, and disease control to protect the maturing timber; and 3) the presence of stumps, logging roads, landings, or other indications of established silvicultural operations that will continue on the site.

While past management may have been relatively non-intensive, intensification of management involving artificial regeneration and other practices can occur as part of a conventional rotation and be considered an established operation.

Although wetland regulations do not require a written forest management plan, it is in a landowner's best interest to have one to document that operations are established, that BMPs are implemented and effective, and that all activities are consistent with other Section 404 exemption criteria.

A change in ownership between landowners (both of which manage forested wetlands for silvicultural purposes) has no bearing on whether a forestry operation is part of an established ongoing activity. Continuation or strict adherence to a management plan written for the previous owner is not required by Section 404 silvicultural exemptions.

"Normal" silvicultural activities (such as road construction, timber harvesting, mechanical or chemical site preparation, reforestation, timber

stand improvement, and minor drainage) conducted as part of established ongoing silvicultural operations are exempt from Section 404 Corps of Engineers permit requirements as long as the appropriate measures are implemented. Those measures are listed under "Roads and Stream Crossings. . ." on pages 19-20. *Alabama's Best Management Practices for Forestry* are not required for exemption from Section 404 Corps of Engineer permit requirements; they are, however, **strongly** recommended to minimize nonpoint source pollution of waters of the state and/or waters of the U.S.

A forestry activity or operation WILL require a 404 permit from the Corps of Engineers when the following applies:

1. The activity results in the immediate or gradual conversion of a wetland to an upland as a consequence of altering the flow and circulation or reducing the reach of waters of the U.S.

Changes in flow, circulation or reach of waters can be affected by permanent major drainage such as channelization or by placement of fill material. A discharge which changes the bottom elevation of waters of the U.S., without converting it to dry land, does not reduce the reach of waters but may alter flow or circulation and therefore may be subject to permitting requirements.

The criteria that are used to determine if a wetland has been converted include a change in hydrology, soils and vegetation to such an extent that the area no longer qualifies as a jurisdictional wetland according to the *Federal Manual for Delineating Jurisdictional Wetlands*.

2. A new activity results in a change from the past, historical use of the wetland into a different use to which it was not previously subject where the flow or circulation of waters is impaired or the reach of the water is reduced. Such a change does not meet the established, ongoing requirement and causes the activity or operation to lose its exemption.

Examples of this situation are areas where tree harvesting has been the established use and the landowner wishes to convert the site for use as pasture, green tree reservoir, agriculture, real estate or aquaculture. In such cases the landowner must first obtain a 404 permit before proceeding with the change. (Changes of use to farm stock ponds may be exempt under a nationwide Corps of Engineers permit).

- 3. Roads and stream crossings are constructed in a wetland without following the mandatory, federal BMPs listed under the wetland road regulations.
- 4. The area has lain idle for so long that hydrologic modifications are necessary to resume operations. This does not refer to temporary water management techniques such as minor drainage, plowing, bedding and seeding which exempt, normal silvicultural activities as long as they don't result in the conversion of wetlands to uplands. However, it does apply to reopening ditches which were once established as permanent wetland drainage structures but have lost their effectiveness for this purpose as they filled in with soil and vegetation.

BMPs for wetlands are not intended to make up for uncontrolled negative impacts on uplands but are part of the overall management of the full landscape to protect water quality.

Streamside management zones should be established and managed around the perimeter of all major drainages and open bodies of water (i.e., main stream courses, oxbow lakes, sloughs) contained within wetlands.

Minor drainage refers to installation of ditches or other water control facilities for temporary dewatering of an area. Minor drainage is considered a normal silvicultural activity in wetlands to temporarily lower the water level and minimize adverse impacts on a wetland site during road construction, timber harvesting and reforestation activities. Minor drainage does not include construction of a canal, dike or any other structure which continuously drains or significantly modifies a wetland or other aquatic area.

Minor drainage is exempt from needing an individual 404 permit if it is part of an ongoing silvicultural operation and does not result in the immediate or gradual conversion of a wetland to an upland or other uses. Artificial drainage must be managed. Once silvicultural activity has been completed the hydrology that existed prior to the activity should be restored by closing drainage channels. **Roads and stream crossings within wetlands and other waters of the U.S.** *must* be constructed and maintained in accordance with the following U.S. Army Corps of Engineer baseline BMPs (from Section 404, Corps of Engineers Permit Requirements, 40 CFR Part 233.22) in order to retain exemption status for the road operation:

- 1. Permanent roads, temporary access roads and skid trails (all for forestry) in waters of the U.S. shall be held to the minimum feasible number, width, and total length consistent with the purpose of specific silvicultural operations, and local topographic and climatic conditions;
- 2. All roads, temporary or permanent, shall be located sufficiently far from streams or other water bodies (except for portions of such roads which must cross water bodies) to minimize discharges of dredged or fill material into waters of the U.S.;
- 3. The road fill shall be bridged, culverted or otherwise designed to prevent the restriction of expected flood flows;
- 4. The fill shall be properly stabilized and maintained during and following construction to prevent erosion;
- 5. Discharges of dredged or fill material into waters of the U.S. to construct a road fill shall be made in a manner that minimizes the encroachment of trucks, tractors, bulldozers, or other heavy equipment within waters of the U.S. (including adjacent wetlands) that lie outside the lateral boundaries of the fill itself;
- 6. In designing, constructing and maintaining roads, vegetative disturbance in the waters of the U.S. shall be kept to a minimum;
- 7. The design, construction and maintenance of the road crossing shall not disrupt the migration or other movement of those species of aquatic life inhabiting the water body;
- 8. Borrow material shall be taken from upland sources whenever feasible;

- 9. The discharge shall not take, or jeopardize the continued existence of a threatened or endangered species as defined under the Endangered Species Act, or adversely modify or destroy the critical habitat of such species;
- 10. Discharges into breeding and nesting areas for water fowl, spawning, and wetlands shall be avoided if less harmful alternatives exist;
- 11. The discharge shall not be located in the proximity of a public water supply intake;
- 12. The discharge shall not occur in areas of concentrated shellfish production;
- 13. The discharge shall not occur in a component of the National Wild and Scenic River System;
- 14. The discharge of material shall consist of suitable material free from toxic pollutants in toxic amounts; and
- 15. All temporary fills shall be removed in their entirety and the area restored to its original elevation.

Roads must be constructed and maintained in accordance with BMPs to assure that flow and circulation pattern and chemical and biological characteristics of waters of the U.S. are not impaired, that the reach of the waters of the U.S. is not reduced and that any adverse effect on the aquatic environment will be otherwise minimized.

Minor drainage is allowed (i.e., to maintain a dry road bed) unless it becomes obvious that BMPs have not been followed or that the road is serving some function other than conveyance of vehicles (i.e., a continuous roadside barrow ditch may not be used to drain adjacent wetlands.

Timber harvesting using normal methods and equipment may be appropriate if harvesting is timed during dry periods.

Harvesting during wet periods or sites that remain wet require special precautions and harvesting systems to minimize water quality hazards and other negative site impacts. Site damaging effects from harvesting equipment such as rutting, puddling and compaction should be controlled and minimized. For example, concentrate skidder traffic on a few trails rather than over the entire area. Do not harvest sites during periods of flowing water whether from overbank flooding or other water accumulation.

Reforestation in wetlands is not much different from regenerating uplands in regards to water quality; the main factors to consider are the site's potential for erosion/sedimentation and hydrology.

Land clearing is an exempt silvicultural activity if it is associated with timber harvesting or reforestation operations. However, land clearing using mechanical equipment for purpose of removing vegetation in preparation for converting the site to a different land use is not part of an established silvicultural operation and is not exempt from having to go through the Corps of Engineer permitting process.

Herbicides bearing the "wetlands" warning on the label can be applied to vegetation on dry soils of jurisdictional wetland areas but must not be applied directly to surface water or to inter-tidal areas below the main high water mark.

Bedding is the construction of earthen mounds from surrounding soil resulting in adjacent and alternating "beds" and furrows. Seedling beds create temporary elevated soil conditions which allow seedlings to escape saturated soil conditions and have a greater opportunity to survive and grow.

Bedding is considered a normal silvicultural activity that is exempt from Section 404 permitting requirements if the following conditions exist:

- The bedding does not result in the gradual or immediate conversion of a wetland to upland as a consequence of impairing the flow or circulation or reducing the reach of waters of the U.S.; and
- It is performed as part of an established, ongoing silvicultural operation.

However, if bedding were to significantly alter the flow, circulation, or reach of waters of the U.S. and consequently result in conversion of a wetland to an upland, the exemption would no longer apply.

Species composition change (i.e., bottomland hardwood to pine plantation) resulting from intensification of management is considered a normal, silvicultural activity that is exempt from 404 permitting if the property is in silvicultural usage before and after the harvesting and planting.

However, a species composition change is not exempt if the activities used to clear, prepare or plant the site would result in a change in use that is accompanied by an impairment of the flow or circulation or the reduction of the reach of waters. An example of such a new use situation would be where the change in species composition would cause a conversion of wetlands to uplands.

Removal of beaver dams and other blockages to remove impounded surface water is considered exempt from 404 permitting as long as the process does not include enlarging or extending the dimension or changing the bottom elevation of the affected drainage way as it existed prior to the formation of the blockage, or without changing the use of the land in question.

Beaver dams can be dismantled by hand without any problems. Dynamite and heavy equipment can also be used to destroy dams as long as they are not used to construct drainage channels that will result in conversion of wetlands to uplands. However, when dynamite or heavy equipment is to be used to remove beaver dams or other blockages, the Corps of Engineers should be contacted for possible permit requirements.

Before and After: Top photo shows blockage caused by beaver dam. Bottom photo illus-trates flow restored.

7. REVEGETATION/STABILIZATION

Skid trail stabilized with logging slash.

As already pointed out in previous sections, some temporary haul roads, skid trails, log landings, firebreaks and other forestry related soil disturbing activities require the establishment of a vegetative cover to stabilize mineral soil surfaces so as to reduce erosion and runoff of sediment into state waters. The USDA Natural Resources Conservation Service can provide a detailed plan for establishing vegetation on these disturbed sites.

Site preparation, such as smoothing or reshaping rutted roads and landings, may be required before conventional equipment can be used for seedbed preparation, seeding, mulching and drainage improvement. Heavily compacted areas may require ripping and/or disking to allow water infiltration and provide a suitable seedbed for root growth.

Agricultural limestone and fertilizer may be needed to ensure success in establishing a vegetative cover. Soil tests are recommended. Incorporate lime and fertilizer into the top 2-4" of soil on slopes less than 6%; into the top 2"of soil on slopes of 6-10%; and onto the surface only on slopes greater than 10%.

Plant species recommendations can be obtained from the local county office of the USDA Natural Resources Conservation Service or Cooperative Extension Service. Areas treated by temporary seeding or mulch should be reseeded with permanent vegetative species as soon as possible during the correct growing season to ensure stabilization of disturbed areas. Disking or mowing of temporary cover is recommended before application of permanent seed and fertilizer.

Mulch is recommended for critical situations to hold seed, lime and fertilizer in place, maintain moisture and prevent extreme temperatures on the soil surface. Mulch needs to be applied immediately after seeding to provide best benefits.

Vegetative establishment for control of erosion and sedimentation can be considered successful once a 75% cover has been obtained. Within one

Vegetated forest road.

year of establishment, a second broadcast application of fertilizer at half the original rate is recommended to ensure plant survival and growth.

Silt screen and hay bales can be used to filter runoff water from closed roads and skid trails to prevent or stop sediment from flowing downslope into waters of the state. When using silt screen, 5-6 foot-long posts should be staked 5-10 feet apart across the problem area. The porous material is stapled 3 feet high on the post and excess material at the bottom of the screen is folded uphill and anchored down with rocks or fill material. Hog wire can be stapled to the stakes before the material is attached to give strength to the silt screen as intercepted sediment builds up.

Square hay bales can be used for the same purpose by lining them up across the road, end to end and one to two bales high. Stake the bales in place on their sides with the strings off the ground to prevent rotting.

Gully stabilization should receive high priority during all land management activities. The most effective way to reduce sediment production and/or reduce the change of reactivating the erosion process in healed gully systems is to avoid operating in them and maintain all existing vegetation. Site preparation, including herbicide and burning, should be excluded.

Actively eroding gully systems need to be stabilized. The USDA Natural Resources Conservation Service can provide technical assistance in planning and installing gully stabilization measures.

APPENDICES

Glossary

ADEM – The state regulatory agency (Alabama Department of Environmental Management) which administers and enforces the Alabama Water Pollution Control Act.

Approaches – The entry and exit of a road or skid trail through a stream crossing.

Aquatic ecosystem – An interacting community of plants and animals (i.e., insects, crayfish, fish and amphibians) requiring an abundance of water during some part of their life cycle.

Backblade – To pull dirt by dropping a dozer blade into the soil and operating the tractor in reverse.

Back slope – The soil profile in the side of a hill that is exposed from cut and fill type road construction.

Banks – The sides of a channel which holds or carries water.

Bed – The bottom of a stream.

Bedding – A mechanical site preparation technique where top soil is mounded into rows. Trees planted on top of the row will be well drained and will benefit from a concentration of nutrients and organic matter during initial stages of growth.

Biological integrity of waters of the state – The ability of a body of water to support the natural level of diverse plants and animals that would normally occur without man-made disturbance or manipulation of the landscape.

Broad based dip – An alteration of a road grade to intercept water from the surface and dispel it to the side without seriously interfering with vehicular traffic.

Canopy – The upper leafy branches of dominant and codominant trees and shrubs which intercept sunlight and shade the ground.

Chemical integrity of waters of the state – The natural range of nutrient and pH levels which would normally occur in waters passing through an undisturbed site.

Compaction – The result of all air and moisture holding spaces being squeezed out from between soil particles by operation of heavy equipment during unfavorable ground conditions. All soils are generally more easily compacted when wet. Compacted soil is less productive and more erodible. **Contour** – An imaginary line on the surface of the earth connecting points of the same elevation.

Corps of Engineers – The federal regulatory agency, a branch of the U.S. Army, which administers and enforces the Section 404 permitting program of the Clean Water Act.

Critical shading of water – Shading when water receives the greatest protection from overheating and ultraviolet exposure caused by solar radiation.

Cross drain – A pipe, ditch or channel which safely conveys water from one side of the road to the other.

Crown – The top of a tree consisting of trunk and expanding branches.

Culverts – Usually metal or plastic pipe but can be a constructed wooden trough.

Cut and fill – Earthen material which is dug out of a hill and placed down slope to provide a relatively level road bed.

Deck – An area cleared to provide a site for loading logs onto a transport vehicle.

Decking – Rough or unfinished lumber used to provide a stable surface for roads, stream crossings or landings.

Definable bank – The bounds of a water body at or below its normal flow level which is usually devoid of terrestrial plants and accumulations of light organic debris.

Deposition – The act of depositing or putting into.

Destabilize (the soil) – To expose and/or loosen soil thus making it more susceptible to erosion.

Direct seeding – Artificially placing seed by hand, land machine or aircraft onto a germination surface.

Disking – Breaking up plants (above and below ground portions), organic matter and soil in preparation to improve the ground for replanting and to reduce plant competition.

Diversion device – A structure to intercept and re-route water from a road surface.

Drainage device – Same as diversion device.

Dredge – Earthen material that is dug from a channel or removed from the bottom of a water body, often to improve drainage.

Ephemeral streams – Low places in the landscape that only flow shortly after significant rainfall. Does not have a well defined channel. **EPA** – The U.S. Environmental Protection Agency. The federal agency created and mandated by the U.S. Congress to administer and enforce the Clean Water Act upon waters of the United States.

Erosion – The dislodging and carrying away of soil particles by wind or water.

Fell – To cut or knock down standing trees or other vegetation.

Fill – To raise the elevation of a surface by depositing dredged or excavated material onto it.

Filtration strip – A strip of land where vegetation, mulch, or fabric is maintained or placed to intercept and prevent upland sediment and other pollutants from flowing into water.

Firebreaks – Natural or artificially constructed barriers to the spread of fire.

Floodplain – Areas adjacent to bodies of water that are most prone to flooding when the water overflows its banks.

Forest floor – Accumulations of organic debris and low vegetation on the ground beneath a stand of trees.

Forest resource managers – This group includes foresters, wildlife biologists, recreational planners and other developers.

Fragile area – Areas that are easily altered physically, biologically, or chemically, and are difficult or slow to recover.

Grade – The steepness of rise or fall of a road surface.

Ground cover – Low growing vegetation such as grass, forbs, vines, or shrubs.

Ground water – Water stored and/or flowing out of sight under the surface of the ground.

Hand planting – Re-establishing vegetation by planting seed or seedlings into prepared planting holes in the ground.

Harvests – Gathering merchantable portions of trees for commercial or domestic use.

Herbicide – a natural or synthetic chemical pesticide applied specifically to control competition from undesirable plant species.

High flow – The increased volume and speed of water that exceeds a stream's normal rate of flow.

High water mark – Physical evidence of past flooding such as discoloration of the lower portions of vegetation or debris suspended in branches off the ground.

Implementation – The carrying out of instructions contained in a management plan, harvest plan or reforestation plan (written or verbal). **Impoundments** – An accumulation of water into pools or ponds formed by blocking the natural drainage.

Inslope – Sloping of a road surface so drainage is toward a ditch between the road and hill.

Intermittent bodies of water – Contain water within well defined channels during part of the year.

Label restrictions – Explicit instructions from the manufacturer with approval from federal and state authorities on when, where, and how a particular pesticide may be applied. Instructions also usually include worker and environmental safety precautions.

Landing - A site where logs are sorted and loaded onto trucks for hauling to handling or processing facilities.

Litter Layer – The natural buildup of dead leaves, branches and stems of dead trees and other forest vegetation which accumulate on the ground and then decay with time.

Log decks – Same as landings.

Mechanical planter – A tree planting machine pulled by a tractor and manned by a person who places trees into the ground.

Mechanical site preparation – Use of heavy machinery such as bulldozers with special attachments that clear debris or incorporate it into the soil to improve planting, sprouting, growth and or survival conditions for new forest trees.

Minimum residual cover - The fewest number of trees necessary to provide shade, natural recruitment of organic material, and soil holding capability for protection of the biological integrity of aquatic ecosystems.

Mulch – A coarse material used to protect soil from rainfall impact and erosion and to improve germination and growth of vegetation. Examples are hay, straw, bark and geotextile fabric.

Natural barrier – Areas that are devoid of fuel or food to support a spreading fire or insect or disease epidemic.

Natural drainage – Perennial, intermittent and ephemeral stream courses in a watershed that collect and expel runoff water.

Natural regeneration – Young trees that originate from seed or sprouts of trees that do or did grow on the site.

Nonpoint source – Water pollution which is not traceable to any discrete or identifiable facility but comes from a broad treatment area.

Normal passage of water and/or aquatic animals – Movement of water or animals which has not been obstructed or inhibited as the result of man-made activity.

Nutrients – Substances that nourish such as nitrogen, potassium and phosphorus in fertilizer. Excess nutrients can destabilize aquatic ecosystems.

Organic debris – Refuse such as tree tops, limbs or severely damaged tree stems which are left following road construction, logging, or site preparation.

Organic matter – Dead plant parts or animals. While natural recruitment of organic matter is part of the energy and nutrient cycles of an aquatic ecosystem, decay of excess amounts in water depletes oxygen needed by fish and other aquatic animals. Tops and other debris can sometimes block and divert the flow of streams causing additional erosion.

Partial cut - A selective timber harvest method where particular trees are usually designated to remain in the stand and the rest are removed in a thinning harvest.

Perennial bodies of water – Contain water within well defined channels virtually year round under normal climate conditions.

Permanent road – A road constructed, used and maintained beyond the time period of a single operation such as a timber sale.

Pesticide - See herbicide for specific application.

Physical integrity of waters of the state – The retention of water in its natural condition without alteration of stream course, depth, clarity or freedom of obstructions that might occur as the direct result of man-made activity.

Plowed fire control line – A man-made fire break constructed by a heavy piece of equipment such as a small bulldozer pushing or pulling a heavy duty plow designed for cutting through the forest floor and root mat to clear combustible material and expose mineral soil.

Pollutants – Man-induced elements such as sediment, organic debris, increased temperature, nutrients, chemicals, trash and soil degradation which exceed a water's natural ability to neutralize before changes in the physical, chemical or biological integrity of waters of the state occur.

Portable bridge – a stream crossing device that is preassembled, installed across a channel and

removed following completion of an activity with minimum adverse impact to water quality.

Portable logging mats – Temporary road or stream crossing surface constructed of rough cut lumber nailed or bolted together. These are usually expected to be removed and reused following completion of a particular operation.

Prescribed burning – Preplanned fire that is deliberately set in a time and manner when prescribed conditions will allow accomplishment of specific objectives and is under control until it burns out or is extinguished.

Puddling – The destruction of root systems and soil structure by the tearing and churning action of heavy equipment operating in saturated soils. Puddled soils are more susceptible to erosion than undisturbed soils.

Reforestation – The restocking of a forest stand through natural regeneration or artificially planted seed or seedlings.

Regeneration – A young stand of a forest.

Regeneration cut – Either partial harvests where selected trees are left to provide adequate seed or silvicultural clearcuts where all merchantable and non-merchantable tree stems are removed or felled to encourage sprouting of desirable tree species.

Riprap – Large stones which are arranged over loose soil to protect it from erosion.

Rutting – Impression left in the ground after soil is compacted by the wheels or tracks of heavy equipment operating in soft earth. Deep rutting can disrupt surface and subsurface hydrology on flat lands and cause soil erosion on steep lands by concentrating surface runoff.

Sediment – Accumulations of loose soil particles. Excessive amounts of sediment can pollute water needed for aquatic ecosystems, drinking, wildlife, outdoor recreation, and industrial use.

Shearing and raking – A site preparation technique that uses a large tractor equipped with a special cutting blade to cut down trees just above the ground surface and a second tractor equipped with a specialized raking blade that pushes the felled trees and other debris into piles or windrows.

Side bank – Same as back slope.

Silviculture – The care and cultivation of forest trees; forestry.

Site preparation – Use of machines, herbicides, fire or combinations thereof to dispose of slash, improve planting conditions and provide initial control of competing vegetation.

Skid – To drag logs with a specialized tractor to a landing.

Skid trails – Paths where logs have been dragged.

Slash – Unmerchantable debris such as brush or tree stems, tops, branches or leaves that are left following a commercial timber harvest operation.

Slough – An open water inlet from a larger body of water.

Soil stabilizing materials – Silt fencing, straw blankets, geotextile fabric, geoweb, etc., applied to protect soil from erosion.

Soil type – Consistent characteristics of an identifiable soil such as particle sizes, moisture holding capacity, plasticity and ease of compaction.

Span – A structural beam designed to hold other bridge components and traffic above a stream or channel.

Steep gradient – A high rate of ascent or descent on a road.

 $\label{eq:stringent} Stringent-Tightly\ regulated\ or\ controlled.$

Surface water – Exposed water above the ground surface.

Temperature – The degree of hotness or coldness of an environment. Removal of vegetative shade from banks of streams and shores will directly raise water temperature and indirectly result in lower dissolved oxygen levels. These influences place some fish and other organisms under stress.

Temporary access roads – Roads not expected to be maintained much longer than the activity for which they were installed to support.

Timber purchasers – Agents who locate commercial stands of timber and negotiate terms of purchase on either their own behalf or on the behalf of timber brokerage or forest product companies.

Topography – The lay of the land.

Tops – The upper (usually referring to unmerchantable) portions of trees.

Trash – Unnaturally occurring, man-made refuse or discarded substances. Openly discarded trash and petroleum wastes may be carried into waters of the state by storm runoff and is unsightly.

Understory vegetation – Small trees, shrubs or other plants which grow beneath the canopy of more dominant trees.

Upland runoff – Surface drainage water which flows from higher elevations of a landscape into the natural drainage system of a watershed. **Vendors** – Contractors who provide tree harvesting, site preparation, tree planting or other forestry services for a fee.

Washouts – Clearing of natural or man made obstructions of drainage systems during high stream flows.

Water bar – A long mound of dirt constructed to prevent soil erosion and water pollution by diverting drainage from a road or skid trail into a filter strip.

Water bodies – Branches, creeks, rivers, ponds, lakes, bays, etc.

Water diversions – Structures or devices which change the direction of drainage flow.

Water quality impairment – The reduction of water quality below established water quality standards.

Waters of the State – Include every watercourse, stream, river, wetland, pond, lake, coastal, ground or surface water, wholly or partially in the state, natural or artificial which is not entirely confined and retained on the property of a single landowner.

Waters of the United States (U.S.) – Include all waters such as lakes, rivers, streams (including intermittent streams), mudflats, sandflats, wetlands and sloughs which are susceptible to use in interstate or foreign commerce, recreation, fish and shellfish production and industrial use; impoundments of waters just described; tributaries of waters just described (other than waters that are themselves wetlands).

Wildfire – Fires burning without the control of a responsible person.

Windrows – Long piles of accumulated debris.

Wing ditch – A secondary "turn out" ditch that diverts drainage water from primary roadside ditches, to be filtered out into the surrounding area.

Additional Resources

Additional information pertaining to silvicultural BMPs and water quality is available from the following publications and sources of assistance:

Streamside Management Zones

- Comerford, N.B., D.G. Neary and R.S Mansel. *The Utility of Buffer Strips to Protect Forested Wetlands from Impacts Due to Forest Silvicultural Operations,* Gainesville, FL, National Council of the Paper Industry for Air and Stream Improvement, In Press.
- Dickson, J.G. and J.C. Huntley. "Riparian Zones and Wildlife in Southern Forests," *Managing Southern Forests for Wildlife and Fish*, Ed. J. Dickson and O. Maughan, USDA Forest Service General Technical Report 50-65, (1987), 37-39.
- Helfrich, L.A. et al. Landowner's Guide to Managing Streams in the Eastern United States, Virginia Cooperative Extension Service Publication 420-141, 1986.
- James, B.R. "Riparian Vegetation Effects on Nitrate Removal from Groundwater," *Journal of Environmental Quality*, University of Maryland, In Press.
- Kundt, J.F. et al. *Streamside Forests: The Vital Beneficial Resource*, Maryland Cooperative Extension Service, 1988.
- Miller, E. "Effects of Forest Practices on Relationships Between Riparian Areas and Aquatic Ecosystems," *Managing Southern Forests for Wildlife and Fish*, Ed. J. Dickson and O. Maughan, USDA Forest Service General Technical Report 50-65, (1987), 40-47.
- Practical Approaches to Riparian Resource Management: An Educational Workshop, Billings, MT, US Bureau of Land Management BLM-MT-PT-89-001-4351, 1989.
- Rudolph, D.G and J.G. Dickinson. "Streamside Zone Width and Amphibian and Reptile Abundance," *The Southwestern Naturalist*, 35, (1990), 472-476.

- Schilling, Erik B. and B. Graeme Lockaby. Streamside Management Zones in Alabama: Functions and Management, Auburn University Center for Forest Sustainability.
- Swift, L.W. "Filter Strip Widths for Forest Roads in Southern Appalachians," *Southern Journal of Applied Forestry*, 10 (1984), 27-34.
- Warmwater Streams Symposium: A National Symposium on Fisheries Aspects of Warmwater Streams, Southern Division American Fisheries Society, (1980).

Stream Crossings

- Baker, C.O. and F.E. Votapka. "Fish Passage Through Culverts," USDA Forest Service Technology and Development Center Report No. FHWA-FL-90-006, 1990.
- Mason, L. *Portable Wetland Area and Stream Crossings*, USDA Forest Service Technology and Development Center, 1990.

Forest Roads

- Kochenderfer, J.N. Cost of and Soil Loss in "Minimum-Standard" Forest Truck Roads Constructed in the Central Appalachians, USDA Forest Service Research Paper NE-544, 1984.
- Swift, L.W. "Soil Losses from Roadbeds and Cut and Fill Slopes in the Slopes in the Southern Appalachian Mountains," *Southern Journal of Applied Forestry,* 8, (1984), 209-215.
- Swift, L.W. "Gravel and Grass Surfacing Reduces Soil Loss from Mountain Roads," *Forest Science*, 30, (1984), 656-670.
- The Layman's Guide to Private Access Road Construction in the Southern Appalachian Mountains, Tennessee Valley Authority, Waynesville, N. C.: Haywood Press, Inc. 1985.
- Wallbridge, T.A., Jr. *The Paper Location of Forest Roads*, Blackburge, AA, Virginia Polytechnical Institute and State University, 1989.

Wallbridge, T.A., Jr. *The Direct Location of Forest Roads*, Blacksburg, VA, Virginia Polytechnical Institute State University, 1990.

Timber Harvesting

- Brinker, R.W. *Best Management Practices for Timber Harvesters*, Alabama Cooperative Extension Service Circular ANR-539, 1989.
- Simmons, F.C. *Handbook for Eastern Timber Harvesting*, USDA Forest Service Northeastern Area State and Private Forestry, 1979.
- Swindel, B.F. "Multi-Resource Effects of Harvest, Site Preparation and Planting in Flatwoods," *Southern Journal of Applied Forestry*, 7, (1983), 6-15.

Reforestation/Stand Management

Beasley, R.S., and A. Granillo, "Water Yields and Sediment Losses from Chemical and Mechnical Site Preparation in Southwest Arkansas," *Forestry and Water Quality. A Mid-South Symposium*, Arkansas Cooperative Extension Service, 1985.

Wetlands

- Gosselink, J.G. and L.C. Lee. *Cumulative Impact Assessment in Bottomland Hardwood Forest*, Baton Rouge, LA, Center for Wetlands Resources, Louisiana State University LSU-CEI-86-09, 1987.
- *Federal Manual for Identifying and Delineating Jurisdictional Wetlands,* Federal Interagency Committee for Wetland Delineation, 1989.
- Forested Wetlands of the Southeast: Review of Major Characteristics and Role in Maintaining Water Quality, USDI Fish and Wildlife Service Publication 163, 1986.

- Forested Wetlands of the United States: Proceedings of the Symposium, USDA Forest Service Southeastern Forest Experiment Station General Technical Report SE-50, 1988.
- Good, R.E., D.F. Whigham and R. L. Simpson. *Freshwater Wetlands: Ecological Processes and Management Potential*, New York, Academic Press, 1978.
- Kellison, R.C. et al. *Regenerating and Managing Natural Stands of Bottomland Hardwoods,* American Pulpwood Association, 88-A-6, 1988.
- Kibby, H.V. "Effects of Wetlands on Water Quality," *Proceedings of the Symposium on Strategies for Protection and Management of Floodplain Wetlands and Other Riparian Ecosystems*, USDA Forest Service Publication GTR-WO-12, 1978.
- Larson, J.S. "Wetland Value Assessment: State of the Art," *National Wetlands Newsletter*, Vol. 3, No. 2, Mar-Apr 1981.
- National List of Plant Species That Occur in Wetlands: Southeast (Region 2), U.S. Fish and Wildlife Service, Biological Report 88 (26.2), 1988.
- National Wetlands Policy Forum, The Conservation Foundation, 1989.
- Wharton, C. H. et al. *Forested Wetlands of Florida, Their Management and Use,* Gainesville, FL, Center for Wetlands, University of Florida, 1977.

General BMPs

- Alabama Nonpoint Source Management Program, Montgomery, Alabama. Alabama Department of Environmental Management. October 2000. http://www.adem.state.al.us/Education%20Div/ Nonpoint%20Program/ManagePlan/partIIsi.pdf
- Best Management Practices for Silvicultural Activities on TVA Lands, Norris, TN, Division of Land Resources, Tennessee Valley Authority, 1990.

Burns, R.G., and J.D. Hewlett. "A Decision Model to Predict Sediment Yield from Forest Practices," *Water Resources Bulletin 19*, (1983), 9-14.

Dissmeyer, G.E. and G.R. Foster. A Guide for Predicting Sheet and Rill Erosion on Forest Land, USDA Forest Service State and Private Forestry Southeastern Area, Technical Publication SA-TP 11, 1980.

Dissmeyer, G.E. and N.D. Kidd. "Multiresource Inventories: Watershed Condition of Commercial Forest Land in South Carolina," USDA Forest Service Research Paper SE-247, 1984.

Erosion Control on Forest Land in Georgia, Georgia Cooperative Extension Service, 1979.

Forestry and Water Quality: A mid-south symposium, Arkansas Cooperative Extension Service, 1985.

Glasser, S.P. Summary of Water Quality Effects from Forest Practices in the South, Atlanta, GA, USDA Forest Service Southern Region, 1982.

Golden, M.S. et al. Forestry Activities and Water Quality in Alabama: Effects, Recommended Practices, and an Erosion Classification System, Alabama Agricultural Experimental Station Auburn University, Bulletin 555, 1984.

Golden, M.S. et al. *Guidelines for Refinement of Best Management Practices in Alabama*, Auburn University, AL, Department of Forestry, 1984.

National Management Measures to Control Nonpoint Source Pollution from Forestry, U.S. Environmental Protection Agency, Office of Water, Washington DC 20460 (4503F) EPA-841-B-05-001 April 2005. http://www.epa.gov/owow/nps/forestrymgmt/ (May 2005).

Sources of Technical Assistance

Technical assistance and/or additional information may be available from the following agencies and organizations to help you plan forestry operations that may affect water quality.

Alabama Department of Conservation and Natural Resources

64 North Union Street, Suite 468 Montgomery, AL 36130 (334) 242-3465 www.outdooralabama.com

Alabama Department of Environmental Management (ADEM)

1400 Coliseum Boulevard Montgomery, AL 36110-2059 or P. O. Box 301463 Montgomery, AL 36130-1463 (334) 271-7700 http://www.adem.alabama.gov

Alabama Cooperative Extension System

109-D Duncan Hall Auburn University, AL 36849 (334) 844-4444 www.aces.edu

Alabama Forestry Association

555 Alabama Street Montgomery, AL 36104 (334) 265-8733 www.alaforestry.org

Alabama Forestry Commission

513 Madison Avenue Montgomery, AL 36130 (334) 240-9365 or 240-9332 www.forestry.state.al.us

American Forest and Paper Association

1111 19th St. NW, Suite 800 Washington, DC 20036 (800) 878-8878 www.afandpa.org

U.S. Army Corps of Engineers

Mobile District P.O. Box 2288 Mobile, AL 36628 (251) 471-5966 www.sam.usace.army.mil

Nashville District P.O. Box 1070 Nashville, TN 37202 (615) 736-7161 www.orn.usace.army.mil

U.S. Environmental Protection Agency (EPA)

Region 4 Sam Nunn Atlanta Federal Center 61 Forsyth Street SW Atlanta, GA 30303-8960 (404) 562-9900 or 1-800-241-1754 http://www.epa.gov/region04/about/index.html

USDA Forest Service

2946 Chestnut Street Montgomery, AL 36107 (334) 832-4470 www.fs.fed.us

USDA Natural Resources Conservation Service

P.O. Box 311 Auburn, AL 36830 (334) 887-4560 www.nrcs.usda.gov/programs

U.S. Fish and Wildlife Service

1208-B Main Street Daphne, AL 36526-4419 (251) 441-5181 www.fws.gov

Alabama Forestry Commission 2007 APPENDIX D

United States Department of Agriculture

Natural Resources Conservation Service

ALABAMA Natural Resources Conservation Service CONSERVATION PRACTICE

CATALOG

As a landowner or farm operator, you face many decisions when managing your natural resources. When you evaluate options for your operation, consider installing conservation practices listed in this handout to help improve your resource management and cropping system. A conservation plan can be developed to improve management for additional resource concerns. NRCS staff and your local soil and water conservation district (SWCD) are available to help you make the right choices to protect your operation and resources.

Nelping People Help the Land

USDA is an equal opportunity provider, employer and lender.

October 2016

This document is not to be used as technical guidance or policy. All NRCS practices shall be applied according to current Conservation Practice Standards available in the Field Office Technical Guide, Section IV (http:// efotg.sc.egov.usda.gov/efotg_locator.aspx?map=).

For information on the USDA Natural Resources Conservation Service in Alabama, visit www.al.nrcs.usda.gov or follow us on Twitter at http://twitter.com/NRCS_AL The U.S. Department of Agriculture (USDA) prohibits discrimination in all of its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex (including gender identity and expression), marital status, familial status, parental status, religion, sexual orientation, political beliefs, genetic information, reprisal, or because all or part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD)." To file a complaint of discrimination, write to USDA, Assistant Secretary for Civil Rights, Office of the Assistant Secretary for Civil Rights, 1400 Independence Avenue, S.W., Stop 9410, Washington, DC 20250-9410, or call toll-free at (866) 632-9992 (English) or (800) 877-8339 (TDD) or (866) 377-8642 (English Federal-relay) or (800) 845-6136 (Spanish Federal-relay). USDA is an equal opportunity provider, employer and lender.

INDEX

Code	Practice	Page
472	Access Control	1
560	Access Road	1
309	Agrichemical Handling Facility	1
591	Amendments for the Treatment of Agricultural Waste	2
366	Anaerobic Digester	2
316	Animal Mortality Facility	2
575	Animal Trails and Walkways	3
450	Anionic Polyacrylamide (PAM) Erosion Control	3
397	Aquaculture Ponds	3
314	Brush Management	4
584	Channel Bed Stabilization	4
326	Clearing and Snagging	4
372	Combustion System Improvements	5
317	Composting Facility	5
327	Conservation Cover	5
328	Conservation Crop Rotation	6
656	Constructed Wetland	6
332	Contour Buffer Strips	6
330	Contour Farming	7
331	Contour Orchard and Other Perrenial Crops	7
340	Cover Crop	7
342	Critical Area Planting	8
402	Dam	8
324	Deep Tillage	8
356	Dike	9
362	Diversion	9
554	Drainage Water Management	9
432	Dry Hydrant	10
647	Early Successional Habitat Development/Management	10
374	Farmstead Energy Improvement	10
382	Fence	11
297	Feral Swine Management Conservation Activity	11
386	Field Border	11
393	Filter Strip	12
394	Firebreak	12
399	Fishpond Management	12
512	Forage and Biomass Planting	13
511	Forage Harvest Management	13
666	Forest Stand Improvement	13
655	Forest Trails and Landings	14
383	Fuel Break	14
410	Grade Stabilization Structure	14
412	Grassed Waterway	15

INDEX

Code	Practice	Page
561	Heavy Use Area Protection	15
422	Hedgerow Planting	15
515	Herbaceouss Weed Control	16
595	Integrated Pest Management	16
320	Irrigation Canal or Lateral	16
388	Irrigation Field Ditch	17
464	Irrigation Land Leveling	17
430	Irrigation Pipeline	17
436	Irrigation Reservoir	18
441	Irrigation System, Microirrigation	18
442	Irrigation System, Sprinkler	18
443	Irrigation System, Surface and Subsurface	19
447	Irrigation System, Tailwater Recovery	19
449	Irrigation Water Management	19
527	Karst Sinkhole Treatment	20
460	Land Clearing	20
543	Land Reconstruction, Abandoned Mined Land	20
453	Land Reclamation, Landslide Treatment	21
466	Land Smoothing	21
670	Lighting System Improvement	21
576	Livestock Shelter Structure	22
484	Mulching	22
590	Nutrient Management	22
500	Obstruction Removal	23
582	Open Channel	23
516	Pipeline	23
378	Pond	24
521C	Pond Sealing or Lining, Bentonite Sealant	24
521D	Pond Sealing or Lining, Compacted Clay Treatment	24
521A	Pond Sealing or Lining, Flexible Membrane	25
521B	Pond Sealing or Lining, Soil Dispersant	25
462	Precision Land Forming	25
338	Prescribed Burning	26
528	Prescribed Grazing	26
533	Pumping Plant	26
345	Residue and Tillage Management, Mulch Till	27
329	Residue and Tillage Management, No-Till & Strip Till	27
643	Restoration and Management of Declining Habitats	27
391	Riparian Forest Buffer	28
654	Road/Trail/Landing Closure-Treatment	28
558	Roof Runoff Structure	28

INDEX

Code	Practice	Page
367	Roofs and Covers	29
798	Seasonal High Tunnel System for Crops	29
350	Sediment Basin	30
646	Shallow Water Development and Management	30
381	Silvopasture Establishment	30
632	Solid/Liquid Waste Separation Facility	30
572	Spoil Spreading	31
574	Spring Development	31
578	Stream Crossing	31
570	Storm Water Runoff Control	32
395	Stream Habitat Improvement and Management	32
580	Streambank and Shoreline Protection	32
585	Stripcropping	33
587	Structure for Water Control	33
649	Structure for Wildlife	33
607	Surface Drain Field Ditch	34
608	Surface Drain Main or Lateral	34
600	Terrace	34
612	Tree/Shrub Establishment	35
660	Tree/Shrub Pruning	35
490	Tree/Shrub Site Preparation	35
620	Underground Outlet	36
645	Upland Wildlife Habitat Management	36
635	Vegetated Treatment Area	36
360	Waste Facility Closure	37
633	Waste Recycling	37
313	Waste Storage Facility	37
634	Waste Transfer	38
629	Waste Treatment	38
359	Waste Treatment Lagoon	38
636	Water Harvesting Catchment	39
638	Water and Sediment Control Basin	39
614	Watering Facility	39
642	Water Well	40
351	Well Decommissioning	40
658	Wetland Creation	40
659	Wetland Enhancement	41
657	Wetland Restoration	41
644	Wetland Wildlife Habitat Management	41
384	Woody Residue Treatment	42

Access Control - 472

The temporary or permanent exclusion of animals, people, vehicles, and/or equipment from an area

Purpose

Acheive and maintain by monitoring and managing animals people, vehicles, coordination with the practices, measures conservation plan

Access Road - 560

Practice Description A travel-way for equipment and vehicles constructed to provide a fixed route for vehicular travel for resource activities involving the management of timber, livestock, agriculture, wildlife habitat, and other conservation enterprises while protecting the soil, water, air, fish, wildlife, and other adjacent natural resources

Purpose

This practice is planned where access is needed from a private or public road or highway to a land use enterprise or conservation measure, or where travel ways are needed in a planned land use area. Access roads range from seasonal use roads, designed for low speed and rough driving conditions, to all-weather roads heavily used by the public and designed with safety as a high priority. Some roads are only constructed for a single purpose; i.e. control of forest fires, logging and forest management activities, access to remote recreation areas, or access for maintenance of facilities.

Agrichemical Handling Facility - 309

Practice Description A facility with an impervious surface to provide an environmentally safe area for on-farm agrichemicals. Provides a safe environment to store, mix, load and cleanup agrichemicals, retain incidental spillage, retain leakage, and reduce surface water, groundwater, air, and/or soil pollution

Purpose

Practice applies where:

- The handling of agrichemicals creates significant potential for pollution of surface water, groundwater, air or soil and a facility is needed to properly manage and handle the chemical operation;
- An adequate water supply is available for filling application equipment tanks, rinsing application equipment and chemical containers as needed;
 Soils and topography are suitable for construction.

NOTE: This practice does not apply to the handling or storage of fuels, or to commercial or multilandowner agrichemical handling operations.

Amendments for Treatment of Ag Waste - 591

Practice Description

The treatment of manure, wastewater, storm water runoff from high use areas, and other wastes, with chemical or biological additives

Purpose

This practice applies where the use of a chemical or biological amendments will alter the physical and chemical characteristics of animal waste as a part of a planned waste management system to:

• Improve or protect air quality

• Improve or protect water quality

 Improve or protect animal health Alter the consistency of

the waste stream of facilitates implementation of a waste management system

Anerobic Digester - 366

Practice Description

A component of a waste management system that provides biological treatment in the absence of oxygen

Purpose

This practice is applied for the treatment of manure and other byproducts of animal agricultural operations for one or more of the following reasons:

- Capture biogas for energy production
- Manage odors
- Reduce the net effect of
- greenhouse gas emissions
- · Reduce pathogens

Animal Mortality Facility - 316

Practice Description An on-farm facility for the treatment or disposal of livestock and poultry carcasses for routine and catastrophic mortality events

Purpose

This practice is applied for one or more of the following purposes:

• Reduce impacts to surface and groundwater resources

- Reduce the impact of odors
- Decrease the spread of pathogens

Animal Trails and Walkways - 575

Practice Description Established lanes or travel ways that facilitate animal movement

Purpose

This practice is applied to achieve one or more of the following:

Provide or improve access to forage, water, working/handling facilities, and/or shelter
Improve grazing efficiency and distribution,

and/or • Protect ecologically

• Protect ecologically sensitive, erosive and/or potentially erosive sites

Anionic Polyacrylamide Erosion Control - 450

Practice Description Application of water-soluble Anionic Polyacrylamide (PAM) to meet a resource concern

Purpose

This practice is applied as part of a conservation system to support one or more of the following:

- Reduce soil erosion by water or wind
- Improve water quality
- Improve air quality by reducing dust emissions

Aquaculture Ponds - 397

Practice Description

A water impoundment constructed and managed for commercial production of fish and other aquaculture products

Purpose

This practice applies to all types of ponds installed or modified for commercial production of fish and other animals and plants. The purpose of the practice is to provide a favorable water environment for producing, growing, harvesting, and marketing commercial aquaculture crops.

Brush Management - 314

The management or removal of woody (nonherbaceous or succulent) plants including those that are invasive and noxious

Purpose

This practice is applied to achieve one or more of the following:

 Create the desired plant community consistent with the ecological site
 Restore or release desired vegetative cover to protect soils, control erosion, reduce sediment, improve water quality or enhance stream flow

• Maintain, modify, or enhance fish and wildlife habitat

• Improve forage accessibility, quality and quantity for livestock and wildlife

• Manage fuel loads to achieve desired conditions

Channel Bed Stabilization - 584

Practice Description Measure(s) used to stabilize the bed or bottom of a channel. This practice applies to the beds of existing or newly constructed alluvial or threshold channels that are undergoing damaging aggradation or degradation and that cannot be feasibly controlled by clearing or snagging, by the establishment of vegetative protection, by the installation of bank protection, or by the installation of upstream water control measures

Purpose

This practice may be applied as part of a conservation management system to support one or more of the following:

Maintain or alter channel bed elevation or gradient
Modify sediment transport or deposition
Manage surface water and groundwater levels in floodplains, riparian areas, and wetlands

Clearing and Snagging - 326

Practice Description Removal of vegetation along the bank (clearing) and/or selective removal of snags, drifts, or other obstructions (snagging) from natural or improved channels and streams

Purpose

Reduce risks to agricultural resources or civil infrastructure by removing obstructions that hinder channel flow or sediment transport in order to accomplish one or more of the following:

• Restore flow capacity and direction

• Prevent excessive bank erosion by eddies or redirection of flow

• Reduce the undesirable formation of bars; and/or;

• Minimize blockages by debris and ice

Combustion System Improvement - 372

Practice Description

Installing, replacing, or retrofitting agricultural combustion systems and/ or related components or devices for air quality and energy efficiency improvement

Purpose

This practice is applied to achieve one or more of the following:

To improve air quality by addressing the air quality resource concerns for particulate matter and ozone precursors by mitigating actual or potential emissions of oxides of nitrogen and/or fine particulate matter
 To improve the energy efficiency of agricultural combustion systems

Composting Facility - 317

Practice Description

A facility to process raw organic by-products such as, animal mortality and manure into biologically stable organic material

Purpose

This practice is applied to reduce the pollution potential of organic agricultural wastes to surface and groundwater by one or more of the following:

• Reduces volume by 25 to 50 percent

• Improves fertilizing capabilities by converting nitrogen to less soluble form

• Aids in nutrient management

Conservation Cover - 327

Practice Description

Establishing and maintaining permanent vegetative cover

Purpose

This practice may be applied to accomplish one or more of the following:

- Reduce soil erosion and sedimentation
- Improve water quality
- Enhance wildlife habitat

Conservation Crop Rotation - 328

Practice Description Growing crops in a recurring sequence on the same field

Purpose

This practice may be applied as part of a conservation management system to support one or more of the following:

Reduce sheet and rill erosion
Reduce soil erosion from wind
Maintain or improve soil organic matter content
Manage the balance of plant nutrients
Improve water use efficiency

• Manage plant pests (weeds, insects, and diseases)

- Provide food for domestic livestock
- Provide food and cover for wildlife

Constructed Wetland - 656

Practice Description An artificial ecosystem with hydrophytic vegetation for water treatment

Purpose

For treatment of wastewater and contaminated runoff from agricultural processing, livestock, and aquaculture facilities, or for improving the quality of storm water runoff or other water flows lacking specific water quality discharge criteria

Contour Buffer Strips - 332

Practice Description

Narrow strips of permanent, herbaceous vegetative cover established around the hill slope, and alternated down the slope with wider cropped strips that are farmed on the contour

Purpose

This practice is applied to achieve one or more of the following:

• Reduce sheet and rill erosion

• Reduce transport of sediment and other water-borne contaminants downslope

• Increase water infiltration

Contour Farming - 330

Using ridges and furrows formed by tillage, planting and other farming operations to change the direction of runoff from directly downslope to around the hillslope

Purpose

This practice is applied to achieve one or more of the following:

- Reduce sheet and rill erosion
- Reduce transport of sediment, other solids and the contaminants attached to them
- Increase water infiltration

Contour Orchard and Other Perennial Crops - 331

Practice Description

Planting orchards, vineyards, or small fruits so that all cultural operations are done on the countour

Purpose

- Reduce soil erosion
- Reduce water loss

Cover Crop - 340

Practice Description

Crops including grasses, legumes and forbs for seasonal cover and other conservation purposes

Purpose

This practice is applied to achieve one or more of the following:

- Reduce erosion from wind and water
- Increase soil organic matter content
- Promote biological nitrogen fixation
- Increase biodiversity
- Weed suppression
- Provide supplemental forage
- Soil moisture management

• Minimize and reduce soil compaction

Critical Area Planting - 342

Practice Description

Establishing permanent vegetation on sites that have or are expected to have high erosion rates, and on sites that have physical, chemical or biological conditions that prevent the establishment of vegetation with normal practices

Purpose

• Stabilize areas with existing or expected high rates of soil erosion by water.

• Stabilize areas with existing or expected high rates of soil erosion by wind

• Rehabilitate and revegetate degraded sites that cannot be stabilized through normal farming practices.

• Stabilize coastal areas, such as sand dunes and riparian areas.

Dam - 402

Practice Description An artificial barrier that can impound water for one or more beneficial purposes

Purpose

This practice is applied to achieve one or more of the following:

Reduce downstream flood damage
Provide permanent water storage for one or more beneficial uses such as irrigation or livestock supply, fire control, municipal or industrial uses, or recreational uses
Create or improve habitat for fish and wildlife

Deep Tillage - 324

Practice Description

Performing tillage operations below the normal tillage depth to modify adverse physical or chemical properties of a soil

Purpose

This practice is applied to achieve one or more of the following:

Bury or mix soil deposits from wind or water erosion or flood overwash
Reduce concentration of soil contaminants, which inhibit plant growth
Fracture restrictive soil layers

Dike - 356

A berm or ridge, or ridge and channel combination of compacted soil to channel water to a desired location or away from an undesired location

Purpose

This practice is applied to achieve one or more of the following:

Protect people and property from floods
Control water level in connection with crop production, fish and wildlife management; or wetland maintenance, improvement, restoration, or construction
Direct water to stable outlets or traps
Direct clean water away from disturbed or polluted areas

Diversion - 362

Practice Description

A channel constructed across the slope with a supporting ridge on the lower side

Purpose

This practice may be applied as part of a resource management system to support one or more of the following purposes:

• Break up concentrations of water on long slopes, on undulating land surfaces, and on land that is generally considered too flat or irregular for terracing

• Increase or decrease the drainage area above ponds

• Protect terrace systems by diverting water from the top terrace where topography, land use, or land ownership prevents terracing the land above • Intercept surface and shallow subsurface flow

• Reduce runoff damages from upland runoff

Drainage Water Management - 554

Practice Description

The use of structures for water control in the process of managing water discharges from surface and/or subsurface agricultural drainage systems

Purpose

The purpose of this practice is:

• Reduce nutrient, pathogen, and/or pesticide loading from drainage systems into downstream receiving waters

• Improve productivity, health, and vigor of plants

• Reduce oxidation of organic matter in soils

• Reduce wind erosion or particulate matter (dust) emissions

• Provide seasonal wildlife habitat

Dry Hydrant - 432

A non-pressurized permanent pipe assembly system installed into water source that permits the withdrawal of water by suction. To provide all weather access to an available water source for fire suppression

Purpose

Where a dependable source of water is available, where transport vehicles can access the site, and where a source of water is needed for fire suppression.

Early Successional Habitat Development / Management - 647

Practice Description

Manage plant succession to develop and maintain early successional habitat to benefit desired wildlife and/or natural communities. To provide habitat for species requiring early successional habitat for all or part of their life cycle

Purpose

This practice is applied on all lands that are suitable for the kinds of desired wildlife and plant species. Management will be designed to achieve the desired plant community structure (e.g., density, vertical and horizontal cover) and plant species diversity.

Farmstead Energy Improvement - 374

Practice Description

Installing, replacing, or retrofitting agricultural equipment systems and/ or related components or devices which results in an on-farm and/or off-site reduction in actual or potential emissions of greenhouse gases

Purpose

This practice is applied to achieve the following:

• Reduce net greenhouse gas emissions (on farm and/or off-site) from agricultural systems or components by implementing the recommendations from on-site energy audits

Fence - 382

A constructed barrier to animals or people

Purpose

This practice facilitates the accomplishment of conservation objectives by providing a means to control movement of animals, people, and vehicles.

Feral Swine Management Conservation Activity - 297

Practice Description

Feral swine management is a component of an area wide effort of assessment, planning, exclusion, scouting, control, and monitoring to document and reduce resource damage caused by

feral swine and focus interagency management efforts to reduce adverse resource impacts and health concerns for other animals and humans.

Purpose

• Determine locations and intensity of feral swine impacts upon resource conditions and potential means to reduce or eliminate these impacts • Develop a management plan to address feralswine-impacted resources of concern using a conservation practice or system of conservation practices • Evaluate the effectiveness of a practice or system of practices in reducing resource impacts from feral swine

Field Border - 386

Practice Description A strip of permanent vegetation established at the edge or around the perimeter of a field

Purpose

This practice may be applied to accomplish one or more of the following:

- Reduce soil erosion
- Provide turn rows for farm machinery
- Soil and water quality protection
- Management of harmful insect populations
- Provide wildlife food and cover
- Increase carbon storage
- in biomass and soils
- Improve air quality

Filter Strip - 393

A strip or area of herbaceous vegetation that removes contaminants from overland flow

Purpose

This practice is applied to achieve one or more of the following:

Reduce suspended solids and associated contaminants in runoff
Reduce dissolved contaminant loadings in runoff

• Reduce suspended solids and associated contaminants in irrigation tailwater

Firebreak - 394

Practice Description

A permanent or temporary strip of bare or vegetated land planned to retard fire

Purpose

This practice applies on all land uses where protection from wildfire is needed or prescribed burning is applied to accomplish one or more of the following:

Reduce the spread of wildfire
Contain prescribed burns

Fishpond Management - 399

Practice Description Managing impounded water for the production of fish or other aquatic organisms

Purpose

This practice is applied in warm and cold water ponds, lakes, and reservoirs not managed for commercial aquaculture purposes to accomplish one or more of the following:

To provide favorable habitat for fish and other aquatic organisms.
To develop and maintain a desired species composition and ratio.
To develop and maintain a desired level of production

Forage and Biomass Planting - 512

Practice Description Establishing adapted and/or compatible species, varieties, or cultivars of herbaceous species suitable for pasture, hay, or biomass production

Purpose

This practice is applied to achieve one or more of the following:

Improve or maintain livestock nutrition and/ or health
Provide or increase forage supply during periods of low forage production
Reduce soil erosion
Improve soil quality and water quality
Produce feedstock

for biofuel or energy production

Forage Harvest Management - 511

Practice Description The timely cutting and removal of forages from the field as hay, greenchop or ensilage

Purpose

Optimize yield and quality of forage at the desired levels
Promote vigorous plant re-growth
Manage for the desired species composition
Use forage plant biomass as a soil nutrient uptake tool
Control insects, diseases and weeds
Maintain and/or improve wildlife habitat

Forest Stand Improvement - 666

Practice Description The manipulation of species composition, stand structure and stocking by cutting or killing selected trees and understory vegetation

Purpose

This practice may be applied to accomplish one or more of the following:

- Increase the quantity and quality of forest products by manipulating stand density and structure
- Harvest forest products
- Initiate forest stand regeneration
- Reduce wildfire hazard

• Improve forest health reducing the potential of damage from pests and moisture stress

• Restore natural plant communities

• Achieve or maintain a desired native understory plant community for special forest products, grazing, and browsing

• Improve aesthetic and recreation, values

- Improve wildlife habitat
- Alter water yield

• Increase carbon storage in selected trees

Forest Trails and Landings - 655

Practice Description

A temporary or infrequently used route, path or cleared area. Trails and landings including skid trails are applicable on forest land. They typically connect to an Access Road (560)

Purpose

This practice may be applied to accomplish one or more of the following:

Provide routes for temporary or infrequent travel by people or equipment for management activities
Provide periodic access for removal and collection of forest products

Fuel Break - 383

Practice Description

A strip or block of land on which the vegetation, debris and detritus have been reduced and/ or modified to control or diminish the risk of the spread of fire crossing the strip or block of land

Purpose

This practice applies on all land where protection from wildfire is needed to control and reduce the risk of the spread of fire by treating, removing or modifying vegetation, debris and detritus.

Grade Stabilization Structure - 410

Practice Description

A structure used to control the grade and head cutting in natural or artificial channels

Purpose

The purpose of this practice is to stabilize the grade and control erosion in natural or artificial channels, to prevent the formation or advance of gullies, and to enhance environmental quality and reduce pollution hazards.

Grassed Waterways - 412

Practice Description A shaped or graded channel that is established with suitable vegetation to carry surface water at a non-erosive velocity to a stable outlet

Purpose

This practice is applied to achieve one or more of the following:

• Convey runoff from terraces, diversions, or other water concentrations without causing erosion or flooding

• Reduce gully erosion

• Protect/improve water quality

Heavy Use Area Protection - 561

Practice Description The stabilization of areas frequently and intensively used by people, animals or vehicles by establishing vegetative cover, by surfacing with suitable materials, and/ or by installing needed structures

Purpose

This practice is applied to achieve one or more of the following:

- Reduce soil erosion
- Improve water quantity and quality
- Improve air quality
- Improve aesthetics
- Improve livestock health

Hedgerow Planting - 422

Practice Description

Establishment of dense vegetation in a linear design to achieve a natural resource conservation purpose

Purpose

This practice may be installed to accomplish one or more of the following:

Habitat, including food, cover, and corridors for terrestrial wildlife
To enhance pollen, nectar, and nesting habitat

for pollinators

• Food, cover, and shade for aquatic organisms that live in adjacent streams or watercourses

• To provide substrate for predaceous and beneficial invertebrates as a component of integrated pest management

• To intercept airborne particulate matter

• To reduce chemical drift and odor movement

• Screens and barriers to noise and dust

• To increase carbon storage in biomass and soils

Living fences

• Boundary delineation and contour guidelines

Herbaceous Weed Control - 315

Practice Description

The removal or control of herbaceous weeds including invasive, noxious and prohibited plants

Purpose

• Enhance accesibility, quantity, and quality of forage and/or browse.

• Restore or release native ore create desired plant communities and wildlife habitats consistent with the ecological site.

• Protect soils and control erosion

• Reduce fine-fuels fire hazard and improve air quality

Integrated Pest Management - 595

Practice Description A site-specific combination of pest prevention, pest avoidance, pest monitoring, and pest suppression strategies

Purpose

This practice is applied on all lands where pests will be managed to accomplish one or more of the following:

• Prevent or mitigate off-site pesticide risks to water quality from leaching, solution runoff and adsorbed runoff losses · Prevent or mitigate offsite pesticide risks to soil, water, air, plants, animals and humans from drift and volatilization losses • Prevent or mitigate on-site pesticide risks to pollinators and other beneficial species through direct contact • Prevent or mitigate cultural, mechanical and biological pest suppression risks to soil, water, air, plants, animals and humans

Irrigation Canal or Lateral - 320

Practice Description A permanent channel constructed to convey irrigation water from the source of supply to one or more irrigated areas

Purpose

Apply this practice to facilitate the efficient distribution and use of water on irrigated land to accomplish one or more of the following:

Where a canal or lateral and related structures are needed as an integral part of an irrigation water conveyance system
Where water supplies for the area served are sufficient to make irrigation practical for the crops to be grown and the irrigation water application methods to be used

Conservation Practice Standard Irrigation Field Ditch (388) should be used for on-farm irrigation water conveyance and/or distribution of less than 25 cubic feet per second

Irrigation Field Ditch - 388

Practice Description A permanent irrigation ditch constructed in or with earth materials, to convey water from the source of supply to a field or fields in an irrigation system

Purpose

This practice may be applied as part of an irrigation water management system to efficiently convey and distribute irrigation waters. This standard is limited to open channels and elevated ditches of 25 cubic feet per second or less in capacity and constructed of earth materials. The practice applies where field ditches are needed as an integral part of an irrigation water distribution system design to facilitate the conservation use of soil and water resources.

Irrigation Land Leveling - 464

Practice Description Reshaping the surface of land to be irrigated, to planned lines and grades

Purpose

This practice applies to the leveling of land irrigated by surface or subsurface irrigation systems. The leveling is based on a detailed engineering survey, design, and layout. Land to be leveled shall be suitable for irrigation and for the proposed methods of water application. Soils shall be deep enough that, after leveling, an adequate usable root zone remains that will permit satisfactory crop production with proper conservation measures. Limited areas of shallow soils may be leveled to provide adequate irrigation grades or an improved field alignment. The finished leveling work must not result in exposed areas of highly permeable soil materials that would inhibit proper distribution of water over the field.

Irrigation Pipeline - 430

Practice Description

A pipeline and appurtenances installed in an irrigation system to convey water

Purpose

This practice is applied to convey water from a source of supply to an irrigation system or storage reservoir.

Irrigation Reservoir - 436

An irrigation water storage structure made by constructing a dam, embankment, pit, or tank

Purpose

This practice may be applied as part of a resource conservation system to achieve one or more of the following:

Store water to provide a reliable irrigation water supply or regulate available irrigation flows
Improve water use efficiency on irrigated land
Provide storage for tailwater recovery and reuse
Provide irrigation

runoff retention time to increase breakdown of chemical contaminants • Reduce energy consumption

Irrigation System, Microirrigation - 441

Practice Description

An irrigation system for frequent application of small quantities of water on or below the soil surface: as drops, tiny streams or miniature spray through emitters or applicators placed along a water delivery line

Purpose

This practice may be applied as part of a conservation management system to support one or more of the following purposes:

To efficiently and uniformly apply irrigation water and maintain soil moisture for plant growth
Prevent contamination of ground and surface water by efficiently and uniformly applying chemicals
Establish desired vegetation

Irrigation System, Sprinkler - 442

Practice Description

An irrigation system in which all necessary equipment and facilities are installed for efficiently applying water by means of nozzles operated under pressure

Purpose

This practice may be applied as part of a conservation management system to achieve one or more of the following:

• Efficiently and uniformly apply irrigation water to maintain adequate soil water for the desired level of plant growth and production without causing excessive water loss, erosion, or water quality impairment

• Climate control and/or modification

• Applying chemicals, nutrients, and/or waste water

• Leaching for control or reclamation of saline or sodic soils

• Reduction in particulate matter emissions to improve air quality

Irrigation System, Surface and Subsurface - 443

Practice Description

A system in which all necessary earthwork, multi-outlet pipelines, and water-control structures have been installed for distribution of water by surface means, such as furrows, borders, and contour levees, or by subsurface means through water table control

Purpose

Applied as part of a resource conservation system to achieve one or more of the following:

• Efficiently convey and distribute irrigation water to the surface point of application without causing excessive water loss, erosion, or water quality impairment

• Efficiently convey and distribute irrigation water to the subsurface point of application without causing excessive water loss or water quality impairment

• Apply chemicals and/or nutrients as part of a surface irrigation system in a manner which protects water quality

• Improve energy use efficiency

Irrigation Tailwater Recovery - 447

Practice Description

A planned irrigation system in which all facilities utilized for the collection, storage, and transportation of irrigation tailwater and/or rainfall runoff for reuse have been installed

Purpose

This practice shall be applied as part of a conservation management system to support one or more of the following:

• Conserve irrigation water supplies

• Improve off-site water quality

Irrigation Water Management - 449

Practice Description

The process of determining and controlling the volume, frequency and application rate of irrigation water in a planned, efficient manner

Purpose

This practice is applied to achieve one or more of the following:

• Manage soil moisture to promote desired crop response

• Optimize use of available water supplies

• Minimize irrigation induced soil erosion

• Decrease non-point source pollution of surface and groundwater resources

• Manage salts in the crop root zone

Manage air, soil, or plant micro-climate
Proper and safe chemigation or fertigation

• Improve air quality by managing soil moisture to reduce particulate matter movement

Karst Sinkhole Treatment - 527

The treatment of sinkholes in karst areas to reduce contamination of groundwater resources, and/or to improve farm safety

Purpose

This practice may be applied as part of a conservation management system in karst topography, which is an area underlain by solutioned carbonate bedrock with sinkholes and caverns. The practice supports one or more of the following purposes:

- Improve water quality
- Improve farm safety

Land Clearing - 460

Practice Description

Removing trees, stumps, and other vegetation to achieve a conservation objective

Purpose

This practice applies to wooded areas where the removal of trees, stumps, brush, and other vegetation is needed in carrying out a conservation plan to allow needed land use adjustments and improvements in the interest of conservation.

Land Reclamation, Abandoned Mined Land - 543

Practice Description Reclamation of land and water areas adversely affected by past mining activities

Purpose

Apply this practice to abandoned mined land that degrades the quality of the environment and prevents or interferes with the beneficial uses of soil, water, air, plant or animal resources, or endangers human health and safety to accomplish one or more of the following:

• Stabilize abandoned mined areas to decrease erosion and sedimentation, support desirable vegetation and improve off-site water quality and or quantity

Maintain or improve landscape visual and functional quality
Protect public health,

safety and general welfare

Land Reclamation, Landslide Treatment -453

Practice Description

Managing natural materials, mine spoil (excavated over-burden), mine waste or overburden to reduce down-slope movement.

Purpose

Apply where in-place material, mine spoil, waste, or overburden, or rock cut road banks are unstable, moving, or judged to have potential of moving down slope in a manner that will cause damage to life, property, or the environment to accomplish one or more of the following:

• Repair unstable slopes caused by slope failure, and reduce the chance of enlargement or movement of slope surfaces

Protect life and propertyPrevent excessive ero-

sion and sedimentation

• Improve water quality and landscape resource quality

• Create a condition conducive to establishing surface protection and beneficial land use

This practice does not apply to constructed embankment surfaces (road fills, dams, dikes, levees and terraces.

Land Smoothing - 466

Practice Description

Removing irregularities on the land surface. To improve surface drainage, provide for more uniform cultivation, and improve equipment operation and efficiency.

Purpose

This practice applies on areas where depressions, mounds, old terraces. turn-rows, and other surface irregularities interfere with the application of needed soil and water conservation and management practices. It is limited to areas having adequate soil depth or where topsoil can be salvaged and replaced. This practice does not apply to the regular maintenance on irrigated land or on land that has been modified using practice standards Precision Land Forming (462) or Irrigation Land Leveling (464).

Lighting System Improvement - 670

Practice Description Complete replacement or retrofitting of one or more components of an existing agricultural lighting system.

Purpose

This practice may be applied as part of a conservation management system to reduce energy use.

Livestock Shelter Structure - 576

Practice Description

A permanent or portable structure with less than four walls and/or a roof to provide for improved utilization of pastureland and rangeland and to shelter livestock from negative environmental factors. This structure is not to be construed to be a building

Purpose

To provide protection for livestock from excessive heat, wind, cold, or snow.
Protect surface waters from nutrient and pathogen loading.
Protect wooded areas from accelerated erosion and excessive nutrient deposition by providing alternative livestock shelter/shade location.

• Improve the distribution of grazing livestock to enhance wildlife habitat, reduce overused areas, or correct other resource concerns resulting from improper livestock distribution

Mulching - 484

Practice Description Applying plant residues or other suitable materials produced off site, to the land surface

Purpose

This practice is applied to achieve one or more of the following:

- Conserve soil moisture
- Moderate soil temperature
- Provide erosion control
- Suppress weed growth
- Establish vegetative cover
- Improve soil condition and increase soil fertility

Nutrient Management - 590

Practice Description

Managing the amount, source, placement, form and timing of the application of plant nutrients and soil amendments

Purpose

This practice is applied to achieve one or more of the following:

• Budget and supply nutrients for plant production

• Properly utilize manure or organic by-products as a plant nutrient source

• Minimize agricultural non-point source pollution of surface and groundwater resources

• Protect air quality by reducing nitrogen emissions (ammonia and NO2 compounds) and the formation of atmospheric particulates

• Maintain or improve the physical, chemical and biological condition of soil

Obstruction Removal - 500

Practice Description Removal and disposal of buildings, structures, other works of improvement, vegetation, debris or other materials

Purpose

To safely remove and dispose of unwanted obstructions in order to apply conservation practices or facilitate the planned land use.

CONDITIONS WHERE

PRACTICE APPLIES On any land where existing obstructions interfere with planned land use development, public safety or infrastructure. This standard is not intended for the removal of obstructions from aquatic environments

Open Channel - 582

Practice Description

Pipeline having an inside diameter of 4 inches or less where conveyance of water is desirable or necessary to conserve the supply, or maintain the quality of water

Purpose

This practice is applied to improve water quantity and quality by conveying water from a source of supply to points of use for livestock or wildlife; make practical the exclusion of livestock from ponds and streams.

Pipeline (Livestock Pipeline) - 516

Practice Description

A pipeline and appurtenances installed to convey water for livestock and wildlife

Purpose

This practice may be applied as part of a resource management system to achieve one or more of the following purposes:

• Convey water to the points of use for livestock or wildlife

Reduce energy use

• Develop renewable energy systems

Pond - 378

A water impoundment made by constructing an embankment or by excavating a pit or dugout. Ponds constructed by the first method are referred to as embankment ponds, and those constructed by the second method are referred to as excavated ponds. Ponds constructed by both the excavation and the embankment methods are classified as embankment ponds if the depth of water impounded against the embankment at the auxiliary spillway elevation is 3 feet or more

Purpose

This practice is applied to provide water for livestock, fish and wildlife, recreation, fire control, and other related uses, and to maintain or improve water quality.

Pond Sealing or Lining, Bentonite Sealant - 521c

Practice Description A liner for a pond or waste storage impoundment consisting of a compacted soil-bentonite mixture.

Purpose

This practice is applied to reduce seepage losses from ponds or waste impoundments for water conservation and environmental protection to accomplish one or more of the following:

• Soils are suitable for treatment with bentonite • Ponds or waste storage impoundments require treatment to reduce seepage rates and to impede the migration of contaminants to within acceptable limits

Pond Sealing or Lining, Compacted Clay Treatment - 521d

Practice Description

A liner for a pond or waste storage impoundment constructed using compacted soil without soil amendments

Purpose

Apply this practice to reduce seepage losses from ponds or waste storage impoundments constructed for water conservation and environmental protection to accomplish one or more of the following:

• In-place soils at the site would exhibit seepage rates in excess of acceptable limits or would allow an unacceptable migration of contaminants from the impoundment

• An adequate quantity of soil suitable for constructing a clay liner without amendments is available at an economical haul distance

Pond Sealing or Lining, Flexible Membrane - 521a

Practice Description

Pond sealing with a flexible membrane is installing a liner made of impervious flexible material to reduce seepage to an acceptable level

Purpose

This practice is used to improve the functionality of a pond, and prevent damage to the natural resources including unacceptable loss of water from seepage. This method of pond sealing is relatively expensive, but often necessary for sandy textured sites and projects that require a very effective sealant. Ponds to be lined may include Irrigation Storage Reservoirs, Irrigation Pits, Waste Treatment Lagoons, Waste Treatment Ponds, and Ponds For Livestock/Wildlife.

Pond Sealing or Lining, Soil Dispersant - 521b

Practice Description

A liner for a pond or waste storage impoundment consisting of a compacted soil-dispersant mixture

Purpose

Apply this practice to reduce seepage losses from ponds or waste impoundments for water conservation and environmental protection to accomplish one or more of the following:

• Soils are suitable for treatment with dispersants

• Ponds or waste storage impoundments require treatment to reduce seepage rates and to impede the migration of contaminants to within acceptable limits

Precision Land Forming - 462

Practice Description

Reshaping the surface of land to planned grades

Purpose

All precision land forming shall be planned as an integral part of an overall system to facilitate the conservative use to improve surface drainage and control erosion.

Prescribed Burning - 338

Practice Description Controlled fire applied to a predetermined area

Purpose

This practice is applied to achieve one or more of the following:

• Control undesirable vegetation

• Prepare sites for harvesting, planting or seeding.

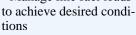
- Control plant disease.
- Reduce wildfire hazards
- Improve wildlife habitat
- Improve plant production quantity and/or quality

• Remove slash and debris

• Enhance seed and seedling production

• Facilitate distribution of grazing and browsing animals

• Restore and maintain ecological sites


Prescribed Grazing - 528

Practice Description Managing the harvest of vegetation with grazing and/or browsing animals

Purpose

This practice may be applied as a part of conservation management system to achieve one or more of the following:

• Improve or maintain desired species composition and vigor of plant communities • Improve or maintain quantity and quality of forage for grazing • Improve or maintain surface and/or subsurface water quality and quantity • Improve or maintain riparian and watershed function Reduce accelerated soil erosion, and maintain or improve soil condition • Improve or maintain the quantity and quality of food and/or cover available for wildlife • Manage fine fuel loads

Pumping Plant - 533

Practice Description

A facility that delivers water at a designed pressure and flow rate. Includes the required pump, associated power unit(s), plumbing, appurtenances, and may include on-site fuel or energy sources, and protective structures.

Purpose

This practice may be applied as a part of a resource management system to achieve one or more of the following:

- Delivery of water ir-
- rigation, water facilities
- Removal of excessive surface water
- Provide efficient use of water on irrigated land

• Transfer of animal waste as part of a manure transfer system

• Improve energy use efficiency

• Improve air quality

Residue & Tillage Management, Reduce Till - 345

Managing the amount, orientation and distribution of crop and other plant residue on the soil surface year round while limiting the soil-disturbing activities used to grow crops in systems where the entire field surface is tilled prior to planting.

Purpose

This practice is applied as part of a conservation management system to support one or more of the following purposes:

- Reduce sheet and rill erosion
- Reduce tillage-induced particulate emissions
- Maintain or increase soil quality and organic matter content
- Reduce energy use
- Increase plant-available moisture

Residue Management, No-Till, and Strip Till - 329

Practice Description

Managing the amount, orientation and distribution of crop and other plant residue on the soil surface year round while limiting soil-disturbing activities to only those necessary to place nutrients, condition residue and plant crops.

Purpose

This practice is applied to achieve one or more of the following:

- Reduce sheet and rill erosion
- Reduce wind erosion
- Improve soil organic matter content
- Reduce CO2 losses from soil
- Increase plant-available moisture
- Provide food and escape cover for wildlife

Restoration and Management of Rare and Declining Habitats - 643

Practice Description

Restoring and managing rare and declining habitats and their associated wildlife species to conserve biodiversity.

Purpose

This practice may be installed to provide habitat for rare and declining species.

Riparian Forest Buffer - 391

An area predominantly trees and/or shrubs located adjacent to and up-gradient from watercourses or water bodies

Purpose

This practice is applied to achieve one or more of the following:

• Create shade to lower or maintain water temperatures to improve habitat for aquatic organisms

• Create or improve riparian habitat and provide a source of detritus and large woody debris

• Reduce excess amounts of sediment, organic material, nutrients and pesticides in surface runoff and reduce excess nutrients and other chemicals in shallow groundwater flow

• Reduce pesticide drift entering the water body

• Restore riparian plant communities

• Increase carbon storage in plant biomass and soils

Road / Trail / Landing Closure - Treatment -654

Practice Description The closure, decommissioning, or abandonment of roads, trails, and/or landings and associated treatment to achieve conservation objectives.

Purpose

To minimize various resource concerns associated with existing roads, trails, and/or landings by closing them and treating to a level where one or more the following objectives are achieved:

• Controlling erosion (road, sheet and rill, gully, wind), chemical residues and offsite movement, sediment deposition and damage, accentuated storm runoff, and particulate matter generation;

Restoring land to a productive state by reestablishing adapted plants and habitat (wildlife food, cover, and shelter), reconnecting wildlife habitat and migration corridors including streams and riparian areas, and controlling noxious and invasive species;
Reestablishing drainage

Reestablishing dramage patterns that existed prior to construction of the road, trail, or landing to restore the form and integrity of associated hill slopes, channels and floodplains and their related hydrologic and geomorphic processes;
Minimizing human impacts to the closure area to meet safety, aesthetic, sensitive area protection, or wildlife habitat requirements

Roof Runoff Structure - 558

Practice Description Structures that collect, control, and transport precipitation from roofs

Purpose

This practice may be installed to improve water quality, reduce soil erosion, increase infiltration, protect structures, improve animal health, and/or increase water quantity.

Roofs and Covers - 367

Practice Description

A rigid, semi-rigid, or flexible manufactured membrane, composite material, or roof structure placed over a waste management facility

Purpose

This practice is applied to achieve one or more of the following:

• Water quality improvement

• Diversion of clean water from animal management areas (i.e. barnyard, feedlot or exercise area) and/or waste storage facilities

• Capture of biogas for energy production

• Reducing net effect of greenhouse gas emissions

• Air quality improvement and odor reduction

High Tunnel System -325

Practice Description An enclosed polyethylene, polycarbonate, plastic, or fabric covered structure that is used to cover and protect crops from sun, wind, excesssive rainfall, or cold to extend the growing season in an envrionmentally safe manner

Purpose

Improve plant health and vigor.

Sediment Basin - 350

Practice Description

A basin constructed to collect and store debris or sediment

Purpose

This practice is applied to achieve one or more of the following:

• Preserve the capacity of reservoirs, wetlands, ditches, canals, diversion, waterways, and streams

• Prevent undesirable deposition on bottom lands and developed areas

• Trap sediment originating from construction sites or other disturbed areas

• Reduce or abate pollution by providing basins for deposition and storage of silt, sand, gravel, stone, agricultural waste solids, and other detritus

Shallow Water Development and Management - 646

Practice Description

The inundation of lands to provide habitat for fish and/or wildlife

Purpose

To provide habitat for wildlife such as shorebirds, waterfowl, wading birds, mammals, fish, reptiles, amphibians and other species that require shallow water for at least a part of their life cycle.

Silvopasture Establishment - 381

Practice Description

An application establishing a combination of trees or shrubs and compatible forages on the same acreage

Purpose

This practice is applied to achieve one or more of the following:

- Provide forage for livestock and the production of wood products
- Increase carbon sequestration
- Improve water quality
- Reduce erosion
- Enhance wildlife habitat
- Reduce fire hazard
- Provide shade for
- livestock
- Develop renewable energy systems

Solid/Liquid Waste Separation Facility - 632

Practice Description

A filtration or screening device, settling tank, settling basin, or settling channel used to separate a portion of solids from a liquid waste stream

Purpose

This practice is applied to partition solids, liquids and their associated nutrients as part of a conservation management system to achieve one or more of the following:

- Improve or protect air quality
- Improve or protect water quality
- Improve or protect animal health
- Meet management objectives

Spoil Spreading - 572

Disposal of surplus excavated materials

Purpose

This practice applies to sites where spoil material is available from the excavation of open channels, ponds or other construction sites to dispose of excess soil from construction activities in an environmentally sound manner that minimizes soil erosion, protects water quality and fits with the land use and landscape

Spring Development - 574

Practice Description

Collection of water from springs or seeps to provide water for a conservation need

Purpose

In areas where a spring or seep will provide a dependable supply of suitable water to improve the quantity and/or quality of water for livestock, wildlife or other agricultural uses

Stream Crossing - 578

Practice Description Controlling the quantity and quality of stormwater runoff

Purpose

To control stormwater runoff to achieve one or more of the following:

- Minimize erosion and sedimentation during and following construction activities.
- Reduce the quantity of stormwater leaving developing or developed sites.
- Improve the quality of stormwater leaving developing or developed sites

Storm Water Runoff Control - 570

A stabilized area or structure constructed across a stream to provide a travel way for people, livestock,equipment, or vehicles

Purpose

This practice may be applied to achieve improved water quality by the following:

- Reduce sediment, nutrient, organic, and inorganic loading of the stream
- Reduce stream bank and streambed erosion

• Provide crossing for access to another land unit

• Provide limited access for livestock water use

Stream Habitat Improvement and Management - 395

Practice Description

Maintain, improve or restore physical, chemical and biological functions of a stream, and its associated riparian zone, necessary for meeting the life history requirements of desired aquatic species.

Purpose

This practice is applied to achieve one or more of the following:

Provide suitable habitat for desired fish and other aquatic species
Provide stream channel and associated riparian conditions that maintain stream corridor ecological processes and hydrological connections of diverse stream habitat types important to aquatic species

Streambank and Shoreline Protection - 580

Practice Description

Treatment(s) used to stabilize and protect banks of streams or constructed channels, and shorelines of lakes, reservoirs, or estuaries

Purpose

This practice is applied to achieve one or more of the following:

• To prevent the loss of land or damage to land uses, or facilities adjacent to the banks of streams or constructed channels, shoreline of lakes, reservoirs, or estuaries including the protection of known historical, archeological, and traditional cultural properties

• To maintain the flow capacity of streams or channels

• Reduce the off-site or downstream effects of sediment resulting from bank erosion

• To improve or enhance the stream corridor for fish and wildlife habitat, aesthetics, and recreation

Stripcropping - 585

Growing planned rotations of row crops, forages, small grains, or fallow in a systematic arrangement of equal width strips across a field

Purpose

This practice may be applied to achieve one or more of the following:

• Reduce soil erosion from water and transport of sediment and other water-borne contaminants

• Reduce soil erosion from wind

• Protect growing crops from damage by windborne soil particles

Structure For Water Control - 587

Practice Description

A structure in a water management system that conveys water, controls the direction or rate of flow, maintains a desired water surface elevation or measures water

Purpose

The practice may be applied as a management component of a water management system to control the stage, discharge, distribution, delivery or direction of water flow.

Structure for Wildlife - 649

Practice Description

A structure installed to replace or modify a missing or deficient wildlife habitat component. PURPOSE To provide structures, in proper amounts, locations and seasons to:

Purpose

A structure installed to replace or modify a missing or deficient wildlife habitat component. PURPOSE To provide structures, in proper amounts, locations and seasons to: • Enhance or sustain nondomesticated wildlife; or • Modify existing structures that pose a hazard to wildlife

Surface Drain Field Ditch - 607

Practice Description A graded ditch for collecting excess water in a field

Purpose

This practice may be applied as part of a resource conservation system to achieve one or more of the following:

 Interception of excess subsurface water and conveyance to an outlet
 Collection or interception of excess surface water, such as sheet flow from natural and graded land surfaces or channel flow from furrows, and conveyance to an outlet
 Drainage of surface depressions

Surface Drain, Main or Lateral - 608

Practice Description An open drainage constructed to a designed cross section alignment and grade

Purpose

This practice is applied as part of a water management system (tailwater recovery) to collect and convey excess irrigation water to storage area for reuse through out the growing season.

Terrace - 600

Practice Description

An earthen embankment, or a combination ridge and channel, constructed across the field slope

Purpose

This practice is applied as a part of a resource management system for one or more of the following purposes:

Reduce erosion by reducing slope length
Retain runoff for moisture conservation

Tree/Shrub Establishment - 612

Establishing woody plants by planting seedlings or cuttings, direct seeding, or natural regeneration

Purpose

This practice is applied to establish woody plants for:

• Forest products such as timber, pulpwood, and energy biomass

• Wildlife habitat

• Long-term erosion control and improvement of water quality

- Treating waste
- Storing carbon in biomass

Energy conservation

- Improving or restoring natural diversity
- Enhancing aesthetics

Tree/Shrub Pruning - 660

Practice Description The removal of all or part of selected branches, leaders or roots from trees and shrubs

Purpose

This practice when applied may achieve one or more of the following:

• Improve the appearance of trees or shrubs, e.g., ornamental plants and Christmas trees • Improve the quality of wood products • Improve the production of plant products, e.g., nuts, fruits, boughs and tips • Reduce fire and/or safety hazards • Improve the growth and vigor of understory plants • Adjust the foliage and branching density or rooting length for other specific intents, such as wind and snow control, noise abatement, access control, and visual screens and managing competition • Improve health and vigor of woody plants e.g. disease, insect and injury management

Tree/Shrub Site Preparation - 490

Practice Description

Treatment of areas to improve site conditions for establishing trees and/or shrubs

Purpose

This practice when applied may achieve one or more of the following:

• Encourage natural regeneration of desirable woody plants

• Permit artificial establishment of woody plants

Underground Outlet - 620

A conduit or system of conduits installed beneath the surface of the ground to convey surface water to a suitable outlet.

Purpose

This practice is applied to carry water to a suitable outlet from terraces, water and sediment control basins, diversions, waterways, surface drains or other similar practices without causing damage by erosion or flooding.

Upland Wildlife Habitat Management - 645

Practice Description

Provide and manage upland habitats and connectivity within the landscape for wildlife.

Purpose

Treating upland wildlife habitat concerns identified during the conservation planning process that enable movement, or provide shelter, cover, food in proper amounts, locations and times to sustain wild animals that inhabit uplands during a portion of their life cycle.

Vegetated Treatment Area - 635

Practice Description

An area of permanent vegetation used for agricultural wastewater treatment.

Purpose

To improve water quality by reducing loading of nutrients, organics, pathogens, and other contaminants associated with livestock, poultry, and other agricultural operations.

Waste Facility Closure - 360

Practice Description The closure of waste impoundments (treat-

ment lagoons and liquid storage facilities), that are no longer used for their intended purpose, in an environmentally safe manner

Purpose

This practice is applied to achieve one or more of the following:

Protect the quality of surface water and groundwater resources
Eliminate a safety hazard for humans and livestock
Safeguard the public

• Safeguard the public health

Waste Recycling - 633

Practice Description

Using agricultural wastes such as manure and wastewater or other organic residues

Purpose

This practice is applied to achieve one or more of the following:

- Protect water quality
- Protect air quality
- Provide fertility for crop, forage, fiber production and forest products
- Improve or maintain soil structure
- Provide feedstock for livestock
- Provide a source of energy

Waste Storage Facility - 313

Practice Description

A waste storage impoundment made by constructing an embankment and/or excavating a pit or dugout, or by building a structure

Purpose

This practice is installed to temporarily store wastes such as manure, to protect from runoff as a component of an agricultural waste management system.

Waste Transfer - 634

A system using structures, conduits or equipment to convey byproducts (wastes) from agricultural operations to points of usage

Purpose

To transfer agricultural material associated with production, processing, and/or harvesting through a hopper or reception pit, a pump (if applicable), a conduit, and/or hauling equipment to:

• A storage/treatment facility

A loading area, and/or
Agricultural land for final utilization as a resource

Waste Treatment - 629

Practice Description The mechanical, chemical or biological treatment of agricultural waste

Purpose

To use mechanical, chemical, or biological treatment facilities and/ processes as part of an agricultural waste management system:

Improve ground and surface water quality by reducing the nutrient content, organic strength, and/or pathogen levels of agricultural waste
Improve air quality by reducing odors and gaseous emissions
Produce value added by-products
Facilitate desirable waste handling, storage, or land application alternatives

Waste Treatment Lagoon - 359

Practice Description

A waste treatment impoundment made by constructing an embankment and/or excavating a pit or dugout

Purpose

To biologically treat waste, such as manure and wastewater, and thereby reduce pollution potential by serving as a treatment component of a waste management system.

• Where the lagoon is a component of a planned agricultural waste management system

• Where treatment is needed for organic wastes generated by agricultural production or processing

• On any site where the lagoon can be constructed, operated and maintained without polluting air or water resources

• To lagoons utilizing embankments with an effective height of 35 feet or less where damage resulting from failure would be limited to damage of farm buildings, agricultural land, or township and country roads

Water Harvesting Catchment - 636

Practice Description The closure of waste impoundments (treatment lagoons and liquid storage facilities), that are no longer used for their intended purpose, in an environmentally safe manner

Purpose

This practice is applied to achieve one or more of the following:

Protect the quality of surface water and groundwater resources
Eliminate a safety hazard for humans and livestock

• Safeguard the public health

Water and Sediment Control Basin - 638

Practice Description An earthen embankment or a combination ridge and channel constructed across the slope of minor watercourses to form a sediment trap and water detention basin with a stable outlet

Purpose

This practice may be applied as part of a resource management system for one or more of the following purposes:

- Reduce watercourse and gully erosion
- Trap sediment

• Reduce and manage on-site and downstream runoff

Watering Facility - 614

Practice Description

A permanent or portable device to provide an adequate amount and quality of drinking water for livestock and or wildlife

Purpose

To provide access to drinking water for livestock and/or wildlife in order to:

Meet daily water requirements
Improve animal distribution

Water Well - 642

A hole drilled, dug, driven, bored, jetted or otherwise constructed to an aquifer for water supply

Purpose

This practice is applied to achieve one or more of the following:

• Provide water for livestock, wildlife, irrigation, and other agricultural uses

• Facilitate proper use of vegetation, such as keeping animals on rangeland and pastures and away from streams, and providing water for wildlife

Water Well Decommissioning - 351

Practice Description The sealing and permanent closure of an inactive, abandoned, or unusable water well

Purpose

This practice is applied to achieve one or more of the following:

· Eliminate physical hazard to people, animals, and farm machinery; and to prevent entry of animals, debris, or other foreign substances Prevent contamination of groundwater by surface water inflow · Restore the natural hydrogeologic conditions, to the extent possible, by preventing vertical cross-contamination or commingling of groundwaters between separate water bearing zones • Eliminate the possibility of the water well being used for any other purpose • Allow future alternative use or management of the site

Wetland Creation - 658

Practice Description

The creation of a wetland on a site that was historically non-wetland

Purpose

This practice may be applied as part of a resource management system to create wetland functions and values.

Wetland Enhancement - 659

The rehabilitation of a degraded wetland or the re-establishment of a former wetland so that soils, hydrology, vegetative community, and habitat are a close approximation of the original natural condition and boundary that existed prior to the modification

Purpose

To provide specific wetland conditions to favor specific wetland functions and targeted species by:

Hydrologic enhancement (depth duration and season of inundation, and/or duration and season of soil saturation)
Vegetative enhancement (including the removal of undesired species, and/or seeding or planting of desired species)

Wetland Restoration - 657

Practice Description

The rehabilitation of a degraded wetland or the reestablishment of a wetland so that soils, hydrology, vegetative community, and habitat are a close approximation of the original natural condition that existed prior to modification to the extent practicable

Purpose

To restore wetland function, value, habitat, diversity, and capacity to a close approximation of the pre-disturbance by:

- Restoring hydric soil
- Restoring hydrology (depth duration and season of inundation, and/ or duration and season of soil saturation)
 Restoring native vegetation (including the removal of undesired species, and/or seeding or planting of desired species

Wetland Wildlife Habitat Management - 644

Practice Description

Retaining, developing or managing wetland habitat for wetland wildlife

Purpose

To maintain, develop, or improve wetland habitat for waterfowl, shorebirds, fur-bearers, or other wetland dependent or associated flora and fauna on or adjacent to wetlands, rivers, lakes and other water bodies where wetland associated wildlife habitat can be managed. This practice applies to natural wetlands and/or water bodies as well as wetlands that may have been previously restored (657), enhanced (659), and created (658).

Woody Residue Treatment - 384

Practice Description Treating woody plant residues created during forestry, agroforestry and horticultural activities to achieve management objectives

Purpose

This practice is applied to achieve one or more of the following:

Reduce hazardous fuels
Reduce the risk of harmful insects and disease

• Protect/maintain air quality by reducing the risk of wildfire

• Improve access to forage for grazing and browsing animals

• Enhance aesthetics

 Reduce the risk of harm to humans and livestock Improve the soil or-

ganic matter

• Improve the site for natural or artificial regeneration

County/Field Service Center Index

County	Field Service Center	Phone	
Autauga	Autaugaville	(334) 365-5532	
Baldwin	Bay Minette	(251) 937-3297	
Barbour	Clayton	(334) 775-3266	
*Bibb	Centerville	(334) 926-4360	
Blount	Oneonta	(205) 274-2363	
*Bullock	Union Springs	(334) 738-2079	
Butler	Greenville	(334) 382-8538	
Calhoun	Anniston	(256) 835-7821	
*Chambers	LaFayette	(334) 864-9983	
Cherokee	Centre	(256) 927-8732	
*Chilton	Clanton	(205) 646-0277	
*Choctaw	Butler	(205) 459-2496	
Clarke	Jackson	(251) 246-0245	
*Clay	Ashland	(256) 354-7512	
*Cleburne	Heflin	(256) 463-2877	
Coffee	New Brockton	(334) 894-5581	
Colbert	Tuscumbia	(256) 383-4323	
Conecuh	Evergreen	(251) 578-1520	
*Coosa	Rockford	(256) 377-4750	
Covington	Andalusia	(334) 222-3519	
Crenshaw	Luverne	(334) 335-3613	
Cullman	Cullman	(256) 734-6471	
Dale	Ozark	(334) 774-4749	
Dallas	Selma	(334) 872-2611	
Dekalb	Rainsville	(256) 638-6398	
Elmore	Wetumpka	(334) 567-2264	
Escambia	Brewton	(251) 867-3185	
Poarch Band of G	Creek Indians	(251) 368-0826	
Etowah	Gadsden	(256) 546-2336	
Fayette	Fayette	(205) 932-8959	
Franklin	Russellville	(256) 332-0274	
Geneva	Geneva	(334) 684-2235	
Greene	Eutaw	(205) 372-3271	
Hale	Greensboro	(334) 624-3856	
Henry	Abbeville	(334) 585-2284	
Houston	Dothan	(334) 793-2310	
Jackson	Scottsboro	(256) 574-1005	
Jefferson	Bessemer	(205) 424-9990	
Lamar	Vernon	(205) 695-7622	
Note Offices with an asterisk () are Soil and Water Conservation District Offices.			

County/Field Service Center Index

County	Field Office	Phone
Laurderdale	Florence	(256) 764-5833
Lawrence	Moulton	(256) 974-1174
Lee	Opelika	(334) 745-4791
Limestone	Athens	(256) 232-4025
Lowndes	Haynesville	(334) 548-2767
Macon	Tuskegee	(334) 725-3321
Madison	Huntsville	(256) 532-1677
Marengo	Linden	(334) 295-8724
Marion	Hamilton	(205) 921-3103
Marshall	Guntersville	(256) 582-3923
Mobile	Mobile	(251) 441-6505
Monroe	Monroeville	(251) 743-2587
Montgomery	Montgomery	(334) 279-3579
Morgan	Hartselle	(256) 773-6541
Perry	Marion	(334) 683-9017
Pickens	Carrollton	(205) 367-8168
Pike	Troy	(334) 566-2300
Randolph	Wedowee	(256) 357-4561
Russell	Phenix City	(334) 297-6692
Shelby	Columbiana	(205) 669-5121
*St. Clair	Pell City	(205) 338-7215
Sumter	Livingston	(205) 652-5105
Talladega	Talladega	(256) 362-8210
Tallapoosa	Alexander City	(256) 329-3084
Tuscaloosa	Tuscaloosa	(205) 553-1733
Walker	Jasper	(205) 387-1879
*Washington	Chatom	(251) 847-6041
Wilcox	Camden	(334) 682-4117
*Winston	Double Springs	(205) 489-5227

Note | Offices with an asterisk () are Soil and Water Conservation District Offices.

Helping People Help the Land

USDA is an equal opportunity provider, employer and lender.